Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug;40(8):1935-1941.
doi: 10.1161/ATVBAHA.120.314168. Epub 2020 Jun 25.

Loss-of-Function CREB3L3 Variants in Patients With Severe Hypertriglyceridemia

Affiliations
Free article

Loss-of-Function CREB3L3 Variants in Patients With Severe Hypertriglyceridemia

Jacqueline S Dron et al. Arterioscler Thromb Vasc Biol. 2020 Aug.
Free article

Abstract

Objective: Genetic determinants of severe hypertriglyceridemia include both common variants with small effects (assessed using polygenic risk scores) plus heterozygous and homozygous rare variants in canonical genes directly affecting triglyceride metabolism. Here, we broadened our scope to detect associations with rare loss-of-function variants in genes affecting noncanonical pathways, including those known to affect triglyceride metabolism indirectly. Approach and Results: From targeted next-generation sequencing of 69 metabolism-related genes in 265 patients of European descent with severe hypertriglyceridemia (≥10 mmol/L or ≥885 mg/dL) and 477 normolipidemic controls, we focused on the association of rare heterozygous loss-of-function variants in individual genes. We observed that compared with controls, severe hypertriglyceridemia patients were 20.2× (95% CI, 1.11-366.1; P=0.03) more likely than controls to carry a rare loss-of-function variant in CREB3L3, which encodes a transcription factor that regulates several target genes with roles in triglyceride metabolism.

Conclusions: Our findings indicate that rare variants in a noncanonical gene for triglyceride metabolism, namely CREB3L3, contribute significantly to severe hypertriglyceridemia. Secondary genes and pathways should be considered when evaluating the genetic architecture of this complex trait.

Keywords: cholesterol; genetics; hypertriglyceridemia; lipids; metabolism; triglyceride.

PubMed Disclaimer

Publication types

Grants and funding