Chemical-Fuel-Driven Assembly in Macromolecular Science: Recent Advances and Challenges
- PMID: 32584522
- DOI: 10.1002/cplu.202000192
Chemical-Fuel-Driven Assembly in Macromolecular Science: Recent Advances and Challenges
Abstract
In the past decade, chemical-fuel-driven processes have been integrated with synthetic self-assembled systems, in which both the formation and properties can be carefully controlled. This strategy can drive systems far away from equilibrium, tailor the lifetime window of transient self-assembled systems, thus holding promise for future smart, adaptive, self-regulated, and life-like systems. By judging whether the building blocks or transient self-assembled systems participate in the fuel-to-waste conversion, the reported systems can be divided into two classes: dissipative self-assembly and self-assembly under dissipative conditions. Among these systems, the utilization of macromolecular building blocks to design non-equilibrium self-assemblied systems is becoming common. Macromolecular systems capable of dissipating energy with a programmed time domain have found widespread application, and have therefore been an active field of scientific inquiry. This Minireview aims to highlight the recent progress and opportunities of chemical-fuel-driven assembly in macromolecules. We envision that chemical-fuel-driven approach will play an increasingly important role in polymer science in the near future.
Keywords: chemical fuels; dissipative systems; non-equilibrium processes; polymers; self-assembly.
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Similar articles
-
Dissipative Self-Assembly Driven by the Consumption of Chemical Fuels.Adv Mater. 2018 Oct;30(41):e1706750. doi: 10.1002/adma.201706750. Epub 2018 Mar 9. Adv Mater. 2018. PMID: 29520846 Review.
-
Energy consumption in chemical fuel-driven self-assembly.Nat Nanotechnol. 2018 Oct;13(10):882-889. doi: 10.1038/s41565-018-0250-8. Epub 2018 Sep 17. Nat Nanotechnol. 2018. PMID: 30224796 Review.
-
Out-of-Equilibrium Colloidal Assembly Driven by Chemical Reaction Networks.Langmuir. 2020 Sep 15;36(36):10639-10656. doi: 10.1021/acs.langmuir.0c01763. Epub 2020 Aug 25. Langmuir. 2020. PMID: 32787015 Free PMC article.
-
Dissipative out-of-equilibrium assembly of man-made supramolecular materials.Chem Soc Rev. 2017 Sep 18;46(18):5519-5535. doi: 10.1039/c7cs00246g. Chem Soc Rev. 2017. PMID: 28703817
-
Devising Synthetic Reaction Cycles for Dissipative Nonequilibrium Self-Assembly.Adv Mater. 2020 May;32(20):e1906834. doi: 10.1002/adma.201906834. Epub 2020 Feb 16. Adv Mater. 2020. PMID: 32064688 Review.
Cited by
-
Using Rheology to Understand Transient and Dynamic Gels.Gels. 2022 Feb 18;8(2):132. doi: 10.3390/gels8020132. Gels. 2022. PMID: 35200514 Free PMC article.
-
Urea-Urease Reaction in Controlling Properties of Supramolecular Hydrogels: Pros and Cons.Chemistry. 2021 Jun 21;27(35):8928-8939. doi: 10.1002/chem.202100490. Epub 2021 May 13. Chemistry. 2021. PMID: 33861488 Free PMC article. Review.
-
Forging out-of-equilibrium supramolecular gels.Nat Synth. 2024;3(12):1481-1489. doi: 10.1038/s44160-024-00623-4. Epub 2024 Sep 6. Nat Synth. 2024. PMID: 39664796 Free PMC article.
-
Temporally programmed polymer - solvent interactions using a chemical reaction network.Nat Commun. 2022 Oct 21;13(1):6242. doi: 10.1038/s41467-022-33810-y. Nat Commun. 2022. PMID: 36271045 Free PMC article.
-
Chemical fuels for molecular machinery.Nat Chem. 2022 Jul;14(7):728-738. doi: 10.1038/s41557-022-00970-9. Epub 2022 Jul 1. Nat Chem. 2022. PMID: 35778564 Review.
References
-
- S. De, R. Klajn, Adv. Mater. 2018, 30, 1706750.
-
- B. A. Grzybowski, K. Fitzner, J. Paczesny, S. Granick, Chem. Soc. Rev. 2017, 46, 5647-5678.
-
- L. Heinen, A. Walther, Soft Matter 2015, 11, 7857-7866.
-
- Z. Yin, G. Song, Y. Jiao, P. Zheng, J.-F. Xu, X. Zhang, CCS 2019, 1, 335-342.
-
- D. Go, D. Rommel, Y. Liao, T. Haraszti, J. Sprakel, A. J. Kuehne, Soft Matter 2018, 14, 910-915.
Publication types
LinkOut - more resources
Full Text Sources
Miscellaneous