Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun 25;15(6):e0235064.
doi: 10.1371/journal.pone.0235064. eCollection 2020.

Assessing the impact of social determinants of health on predictive models for potentially avoidable 30-day readmission or death

Affiliations

Assessing the impact of social determinants of health on predictive models for potentially avoidable 30-day readmission or death

Yongkang Zhang et al. PLoS One. .

Abstract

Objectives: Early hospital readmissions or deaths are key healthcare quality measures in pay-for-performance programs. Predictive models could identify patients at higher risk of readmission or death and target interventions. However, existing models usually do not incorporate social determinants of health (SDH) information, although this information is of great importance to address health disparities related to social risk factors. The objective of this study is to examine the impact of social determinants of health on predictive models for potentially avoidable 30-day readmission.

Methods: We extracted electronic health record data for 19,941 hospital admissions between January 2015 and November 2017 at an academic medical center in New York City. We applied the Simplified HOSPITAL score model to predict potentially avoidable 30-day readmission or death and examined if incorporating individual- and community-level SDH could improve the prediction using cross-validation. We calculated the C-statistic for discrimination, Brier score for accuracy, and Hosmer-Lemeshow test for calibration for each model using logistic regression. Analysis was conducted for all patients and three subgroups that may be disproportionately affected by social risk factors, namely Medicaid patients, patients who are 65 or older, and obese patients.

Results: The Simplified HOSPITAL score model achieved similar performance in our sample compared to previous studies. Adding SDH did not improve the prediction among all patients. However, adding individual- and community-level SDH at the US census tract level significantly improved the prediction for all three subgroups. Specifically, C-statistics improved from 0.70 to 0.73 for Medicaid patients, from 0.66 to 0.68 for patients 65 or older, and from 0.70 to 0.73 for obese patients.

Conclusions: Patients from certain subgroups may be more likely to be affected by social risk factors. Incorporating SDH into predictive models may be helpful to identify these patients and reduce health disparities associated with vulnerable social conditions.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Similar articles

Cited by

References

    1. Leppin AL, Gionfriddo MR, Kessler M, Brito JP, Mair FS, Gallacher K, et al. Preventing 30-day hospital readmissions: a systematic review and meta-analysis of randomized trials. JAMA Intern Med. 2014;174(7):1095–107. Epub 2014/05/14. 10.1001/jamainternmed.2014.1608 - DOI - PMC - PubMed
    1. Centers for Medicare and Medicaid Services [Internet]. Baltimore: Community-based Care Transitions Program; 2019 [cited 2019 03/25]. Available from: https://innovation.cms.gov/initiatives/cctp/.
    1. van Walraven C, Bennett C, Jennings A, Austin PC, Forster AJ. Proportion of hospital readmissions deemed avoidable: a systematic review. CMAJ. 2011;183(7):E391–402. Epub 2011/03/30. 10.1503/cmaj.101860 - DOI - PMC - PubMed
    1. Centers for Medicare and Medicaid Services [Internet]. Baltimore: Hospital Readmissions Reduction Program (HRRP); 2019 [cited 2019 08/23]. Available from: https://www.cms.gov/Medicare/Quality-Initiatives-Patient-Assessment-Inst....
    1. Hu J, Kind AJH, Nerenz D. Area Deprivation Index Predicts Readmission Risk at an Urban Teaching Hospital. Am J Med Qual. 2018;33(5):493–501. Epub 2018/01/24. 10.1177/1062860617753063 - DOI - PMC - PubMed

Publication types