Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul 20;59(14):9739-9755.
doi: 10.1021/acs.inorgchem.0c00969. Epub 2020 Jun 25.

ESI-MS Study of the Interaction of Potential Oxidovanadium(IV) Drugs and Amavadin with Model Proteins

Affiliations

ESI-MS Study of the Interaction of Potential Oxidovanadium(IV) Drugs and Amavadin with Model Proteins

Valeria Ugone et al. Inorg Chem. .

Abstract

In this study, the binding to lysozyme (Lyz) of four important VIV compounds with antidiabetic and/or anticancer activity, [VIVO(pic)2(H2O)], [VIVO(ma)2], [VIVO(dhp)2], and [VIVO(acac)2], where pic-, ma-, dhp-, and acac- are picolinate, maltolate, 1,2-dimethyl-3-hydroxy-4(1H)-pyridinonate, and acetylacetonate anions, and of the vanadium-containing natural product amavadin ([VIV(hidpa)2]2-, with hidpa3- N-hydroxyimino-2,2'-diisopropionate) was investigated by ElectroSpray Ionization-Mass Spectrometry (ESI-MS). Moreover, the interaction of [VIVO(pic)2(H2O)], chosen as a representative VIVO2+ complex, was examined with two additional proteins, myoglobin (Mb) and ubiquitin (Ub), to compare the data. The examined vanadium concentration was in the range 15-150 μM, i.e., very close to that found under physiological conditions. With pic-, dhp-, and hidpa3-, the formation of adducts n[VIVOL2]-Lyz or n[VIVL2]-Lyz is favored, while with ma- and acac- the species n[VIVOL]-Lyz are detected, with n dependent on the experimental VIV/protein ratio. The behavior of the systems with [VIVO(pic)2(H2O)] and Mb or Ub is very similar to that of Lyz. The results suggested that under physiological conditions, the moiety cis-VIVOL2 (L = pic-, dhp-) is bound by only one accessible side-chain protein residue that can be Asp, Glu, or His, while VIVOL+ (L = ma-, acac-) can interact with the two equatorial and axial sites. If the VIV complex is thermodynamically stable and does not have available coordination positions, such as amavadin, the protein cannot interact with it through the formation of coordination bonds and, in such cases, noncovalent interactions are predicted. The formation of the adducts is dependent on the thermodynamic stability and geometry in aqueous solution of the VIVO2+ complex and affects the transport, uptake, and mechanism of action of potential V drugs.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Structure in Aqueous Solution of the VCs Studied in This Work: cis-[VIVO(pic)2(H2O)], [VIVO(acac)2], [VIVO(dhp)2] ⇄ cis-[VIVO(dhp)2(H2O)], cis-[VIVO(ma)2(H2O)], and [VIV(hidpa)2]2– (amavadin)
The charges of the ligands and V=O ion (2+) are omitted for clarity.
Figure 1
Figure 1
ESI-MS spectrum of lysozyme (concentration 5 μM).
Figure 2
Figure 2
Deconvoluted ESI-MS spectrum of lysozyme (concentration 5 μM).
Figure 3
Figure 3
ESI-MS spectra recorded on the system containing [VIVO(pic)2(H2O)] and lysozyme (5 μM): molar ratios 3:1 (top) and 5:1 (bottom).
Figure 4
Figure 4
Deconvoluted ESI-MS spectra recorded on the system containing [VIVO(pic)2(H2O)] and lysozyme (5 μM): molar ratios 3:1 (top) and 5:1 (bottom). L indicates the picolinato ligand.
Figure 5
Figure 5
Deconvoluted ESI-MS spectra recorded on the system containing [VIVO(pic)2(H2O)] and lysozyme (50 μM): molar ratios 3:1 (top) and 5:1 (bottom). L indicates the picolinato ligand. With the asterisks, the peaks of the adducts {[VIVOL]+ + n[VIVOL2]}–Lyz with n = 0–2 (ratio 3:1) and n = 0–4 (ratio 5:1) are denoted.
Figure 6
Figure 6
Deconvoluted ESI-MS spectra recorded on the system containing [VIVO(ma)2] and lysozyme (50 μM): molar ratios 3:1 (top) and 5:1 (bottom). L indicates the maltolato ligand.
Figure 7
Figure 7
Deconvoluted ESI-MS spectra recorded on the system containing [VIVO(dhp)2] and lysozyme (5 μM): molar ratios 3:1 (top) and 5:1 (bottom). L indicates the 1,2-dimethyl-3-hydroxy-4(1H)-pyridinonato ligand.
Figure 8
Figure 8
Deconvoluted ESI-MS spectra recorded on the system containing [VIVO(acac)2] and lysozyme with a molar ratio of 5:1 and a protein concentration of 5 μM (top) and 50 μM (bottom). L indicates the acetylacetonato ligand.
Figure 9
Figure 9
Deconvoluted ESI-MS spectra recorded on the system containing [VIV(hidpa)2]2– and lysozyme with a molar ratio of 5:1 and a protein concentration of 5 μM (top) and 50 μM (bottom). L indicates the N-hydroxyimino-2,2′-diisopropionato ligand.
Figure 10
Figure 10
Deconvoluted ESI-MS spectrum of myoglobin (concentration 5 μM).
Figure 11
Figure 11
Deconvoluted ESI-MS spectra recorded on the system containing [VIVO(pic)2(H2O)] and myoglobin (50 μM): molar ratios 3:1 (top) and 5:1 (bottom). L indicates the picolinato ligand. With the asterisks, the peaks of the adducts {[VIVOL] + n[VIVOL2]}–Mb with n = 0–3 (ratio 3:1) and n = 0–4 (ratio 5:1) are denoted.
Figure 12
Figure 12
Deconvoluted ESI-MS spectrum of ubiquitin (concentration 5 μM).
Figure 13
Figure 13
Experimental (top) and calculated (bottom) isotopic pattern for the peak revealed in the ESI-MS spectrum of ubiquitin, C378H639N105O118S (i.e., [Ub+9H+]) at m/z 952.63 with z = 9.
Figure 14
Figure 14
Deconvoluted ESI-MS spectra recorded on the system containing [VIVO(pic)2(H2O)] and ubiquitin (5 μM): molar ratios 3:1 (top), 5:1 (center), and 10:1 (bottom). L indicates the picolinato ligand.
Figure 15
Figure 15
ESI-MS spectrum recorded on the system containing [VIVO(ma)2] (150 μM) and lysozyme (50 μM). The region in the m/z range 180–350 is presented in the inset.
Scheme 2
Scheme 2. Adducts Formed at the Physiological Vanadium Concentration by [VIVO(pic)2(H2O)], [VIVO(ma)2], [VIVO(dhp)2], [VIVO(acac)2], and [VIV(hidpa)2]2–,
When more than one adduct is formed in aqueous solution, it is indicated with minor or major species. In round parentheses, the less probable binding of an axial residue Z is denoted. The charges of the ligands and V=O ion (2+) are omitted for clarity.

Similar articles

Cited by

References

    1. Sakurai H.; Yoshikawa Y.; Yasui H. Current state for the development of metallopharmaceutics and anti-diabetic metal complexes. Chem. Soc. Rev. 2008, 37, 2383–2392. 10.1039/b710347f. - DOI - PubMed
    2. Thompson K. H.; Lichter J.; LeBel C.; Scaife M. C.; McNeill J. H.; Orvig C. Vanadium treatment of type 2 diabetes: A view to the future. J. Inorg. Biochem. 2009, 103, 554–558. 10.1016/j.jinorgbio.2008.12.003. - DOI - PubMed
    3. Barrio D. A.; Etcheverry S. B. Potential use of vanadium compounds in therapeutics. Curr. Med. Chem. 2010, 17, 3632–3642. 10.2174/092986710793213805. - DOI - PubMed
    4. Rehder D. The potentiality of vanadium in medicinal applications. Future Med. Chem. 2012, 4, 1823–1837. 10.4155/fmc.12.103. - DOI - PubMed
    5. Pessoa J. C.; Etcheverry S.; Gambino D. Vanadium compounds in medicine. Coord. Chem. Rev. 2015, 301–302, 24–48. 10.1016/j.ccr.2014.12.002. - DOI - PMC - PubMed
    6. Kioseoglou E.; Petanidis S.; Gabriel C.; Salifoglou A. The chemistry and biology of vanadium compounds in cancer therapeutics. Coord. Chem. Rev. 2015, 301-302, 87–105. 10.1016/j.ccr.2015.03.010. - DOI
    7. Crans D. C. Antidiabetic, Chemical, Physical Properties of Organic Vanadates as Presumed Transition-State Inhibitors for Phosphatases. J. Org. Chem. 2015, 80, 11899–11915. 10.1021/acs.joc.5b02229. - DOI - PubMed
    8. Rehder D. Perspectives for vanadium in health issues. Future Med. Chem. 2016, 8, 325–338. 10.4155/fmc.15.187. - DOI - PubMed
    9. Leon I. E.; Cadavid-Vargas J. F.; Di Virgilio A. L.; Etcheverry S. B. Vanadium, ruthenium and copper compounds: a new class of nonplatinum metallodrugs with anticancer activity. Curr. Med. Chem. 2017, 24, 112–148. 10.2174/0929867323666160824162546. - DOI - PubMed
    10. Crans D. C; Yang L.; Haase A.; Yang X.. Health Benefits of Vanadium and Its Potential as an Anticancer Agent. In Metal Ions in Life Sciences; Sigel A., Sigel H., Freisinger E., Sigel R. K. O., Ed.; De Gruyter GmbH: Berlin, 2018; Vol. 18, pp 251–279. - PubMed
    11. Crans D. C.; Henry L.; Cardiff G.; Posner B. I.. Developing Vanadium as Antidiabetic and Anticancer Drugs: A Clinical and Historical Perspective. In Essential Metals in Medicine: Therapeutic Use and Toxicity of Metal Ions in the Clinic; Carver P. L.; Ed.; De Gruyter GmbH: Berlin, 2019; Vol. 19, pp 203–230.
    1. Sanna D.; Garribba E.; Micera G. Interaction of VO2+ ion with human serum transferrin and albumin. J. Inorg. Biochem. 2009, 103, 648–655. 10.1016/j.jinorgbio.2009.01.002. - DOI - PubMed
    2. Sanna D.; Micera G.; Garribba E. On the Transport of Vanadium in Blood Serum. Inorg. Chem. 2009, 48, 5747–5757. 10.1021/ic802287s. - DOI - PubMed
    3. Sanna D.; Micera G.; Garribba E. New Developments in the Comprehension of the Biotransformation and Transport of Insulin-Enhancing Vanadium Compounds in the Blood Serum. Inorg. Chem. 2010, 49, 174–187. 10.1021/ic9017213. - DOI - PubMed
    4. Sanna D.; Buglyo P.; Micera G.; Garribba E. A quantitative study of the biotransformation of insulin-enhancing VO2+ compounds. JBIC, J. Biol. Inorg. Chem. 2010, 15, 825–839. 10.1007/s00775-010-0647-9. - DOI - PubMed
    5. Sanna D.; Micera G.; Garribba E. Interaction of VO2+ Ion and Some Insulin-Enhancing Compounds with Immunoglobulin G. Inorg. Chem. 2011, 50, 3717–3728. 10.1021/ic200087p. - DOI - PubMed
    6. Sanna D.; Biro L.; Buglyo P.; Micera G.; Garribba E. Biotransformation of BMOV in the presence of blood serum proteins. Metallomics 2012, 4, 33–36. 10.1039/C1MT00161B. - DOI - PubMed
    7. Sanna D.; Bíró L.; Buglyó P.; Micera G.; Garribba E. Transport of the anti-diabetic VO2+ complexes formed by pyrone derivatives in the blood serum. J. Inorg. Biochem. 2012, 115, 87–99. 10.1016/j.jinorgbio.2012.04.020. - DOI - PubMed
    8. Sanna D.; Ugone V.; Micera G.; Garribba E. Temperature and solvent structure dependence of VO2+ complexes of pyridine-N-oxide derivatives and their interaction with human serum transferrin. Dalton Trans. 2012, 41, 7304–7318. 10.1039/c2dt12503j. - DOI - PubMed
    9. Sanna D.; Micera G.; Garribba E. Interaction of Insulin-Enhancing Vanadium Compounds with Human Serum holo-Transferrin. Inorg. Chem. 2013, 52, 11975–11985. 10.1021/ic401716x. - DOI - PubMed
    10. Sanna D.; Serra M.; Micera G.; Garribba E. Interaction of Antidiabetic Vanadium Compounds with Hemoglobin and Red Blood Cells and Their Distribution between Plasma and Erythrocytes. Inorg. Chem. 2014, 53, 1449–1464. 10.1021/ic402366x. - DOI - PubMed
    11. Sanna D.; Serra M.; Micera G.; Garribba E. Uptake of potential anti-diabetic VIVO compounds of picolinate ligands by red blood cells. Inorg. Chim. Acta 2014, 420, 75–84. 10.1016/j.ica.2013.12.038. - DOI
    12. Koleša-Dobravc T.; Lodyga-Chruscinska E.; Symonowicz M.; Sanna D.; Meden A.; Perdih F.; Garribba E. Synthesis and characterization of VIVO complexes of picolinate and pyrazine derivatives. Behavior in the solid state and aqueous solution and biotransformation in the presence of blood plasma proteins. Inorg. Chem. 2014, 53, 7960–7976. 10.1021/ic500766t. - DOI - PubMed
    13. Sanna D.; Ugone V.; Pisano L.; Serra M.; Micera G.; Garribba E. Behavior of the potential antitumor VIVO complexes formed by flavonoid ligands. 2. Characterization of sulfonate derivatives of quercetin and morin, interaction with the bioligands of the plasma and preliminary biotransformation studies. J. Inorg. Biochem. 2015, 153, 167–177. 10.1016/j.jinorgbio.2015.07.018. - DOI - PubMed
    14. Sanna D.; Ugone V.; Micera G.; Pivetta T.; Valletta E.; Garribba E. Speciation of the Potential Antitumor Agent Vanadocene Dichloride in the Blood Plasma and Model Systems. Inorg. Chem. 2015, 54, 8237–8250. 10.1021/acs.inorgchem.5b01277. - DOI - PubMed
    15. Sanna D.; Ugone V.; Sciortino G.; Buglyo P.; Bihari Z.; Parajdi-Losonczi P. L.; Garribba E. VIVO complexes with antibacterial quinolone ligands and their interaction with serum proteins. Dalton Trans. 2018, 47, 2164–2182. 10.1039/C7DT04216G. - DOI - PubMed
    16. Sciortino G.; Sanna D.; Ugone V.; Maréchal J.-D.; Alemany-Chavarria M.; Garribba E. Effect of secondary interactions, steric hindrance and electric charge on the interaction of VIVO species with proteins. New J. Chem. 2019, 43, 17647–17660. 10.1039/C9NJ01956A. - DOI
    1. Willsky G. R.; Goldfine A. B.; Kostyniak P. J.; McNeill J. H.; Yang L. Q.; Khan H. R.; Crans D. C. Effect of vanadium(IV) compounds in the treatment of diabetes: in vivo and in vitro studies with vanadyl sulfate and bis(maltolato)oxovandium(IV). J. Inorg. Biochem. 2001, 85, 33–42. 10.1016/S0162-0134(00)00226-9. - DOI - PubMed
    2. Liboiron B. D.; Thompson K. H.; Hanson G. R.; Lam E.; Aebischer N.; Orvig C. New Insights into the Interactions of Serum Proteins with Bis(maltolato)oxovanadium(IV): Transport and Biotransformation of Insulin-Enhancing Vanadium Pharmaceuticals. J. Am. Chem. Soc. 2005, 127, 5104–5115. 10.1021/ja043944n. - DOI - PubMed
    3. Jakusch T.; Hollender D.; Enyedy E. A.; Gonzalez C. S.; Montes-Bayon M.; Sanz-Medel A.; Pessoa J. C.; Tomaz I.; Kiss T. Biospeciation of various antidiabetic VIVO compounds in serum. Dalton Trans. 2009, 2428–2437. 10.1039/b817748a. - DOI - PubMed
    4. Correia I.; Jakusch T.; Cobbinna E.; Mehtab S.; Tomaz I.; Nagy N. V.; Rockenbauer A.; Pessoa J. C.; Kiss T. Evaluation of the binding of oxovanadium(IV) to human serum albumin. Dalton Trans. 2012, 41, 6477–6487. 10.1039/c2dt12193j. - DOI - PubMed
    5. Mehtab S.; Goncalves G.; Roy S.; Tomaz A. I.; Santos-Silva T.; Santos M. F. A.; Romao M. J.; Jakusch T.; Kiss T.; Pessoa J. C. Interaction of vanadium(IV) with human serum apo-transferrin. J. Inorg. Biochem. 2013, 121, 187–195. 10.1016/j.jinorgbio.2012.12.020. - DOI - PubMed
    6. Goncalves G.; Tomaz I.; Correia I.; Veiros L. F.; Castro M. M. C. A.; Avecilla F.; Palacio L.; Maestro M.; Kiss T.; Jakusch T.; Garcia M. H. V.; Pessoa J. C. A novel VIVO-pyrimidinone complex: synthesis, solution speciation and human serum protein binding. Dalton Trans. 2013, 42, 11841–11861. 10.1039/c3dt50553g. - DOI - PubMed
    7. Justino G. C.; Garribba E.; Pessoa J. C. Binding of VIVO2+ to the Fe binding sites of human serum transferrin. A theoretical study. JBIC, J. Biol. Inorg. Chem. 2013, 18, 803–813. 10.1007/s00775-013-1029-x. - DOI - PubMed
    8. Santos M. F. A.; Correia I.; Oliveira A. R.; Garribba E.; Pessoa J. C.; Santos-Silva T. Vanadium complexes as prospective therapeutics: Structural characterization of a VIV lysozyme adduct. Eur. J. Inorg. Chem. 2014, 2014, 3293–3297. 10.1002/ejic.201402408. - DOI
    9. Pessoa J. C.; Gonçalves G.; Roy S.; Correia I.; Mehtab S.; Santos M. F. A.; Santos-Silva T. New insights on vanadium binding to human serum transferrin. Inorg. Chim. Acta 2014, 420, 60–68. 10.1016/j.ica.2013.11.025. - DOI
    10. Pessoa J. C. Thirty years through vanadium chemistry. J. Inorg. Biochem. 2015, 147, 4–24. 10.1016/j.jinorgbio.2015.03.004. - DOI - PubMed
    11. Pessoa J. C.; Garribba E.; Santos M. F. A.; Santos-Silva T. Vanadium and proteins: uptake, transport, structure, activity and function. Coord. Chem. Rev. 2015, 301–302, 49–86. 10.1016/j.ccr.2015.03.016. - DOI
    12. Correia I.; Chorna I.; Cavaco I.; Roy S.; Kuznetsov M. L.; Ribeiro N.; Justino G.; Marques F.; Santos-Silva T.; Santos M. F. A.; Santos H. M.; Capelo J. L.; Doutch J.; Pessoa J. C. Interaction of [VIVO(acac)2] with human serum transferrin and albumin. Chem. - Asian J. 2017, 12, 2062–2084. 10.1002/asia.201700469. - DOI - PubMed
    13. Jakusch T.; Kiss T. In vitro study of the antidiabetic behavior of vanadium compounds. Coord. Chem. Rev. 2017, 351, 118–126. 10.1016/j.ccr.2017.04.007. - DOI
    14. Levina A.; Crans D. C.; Lay P. A. Speciation of metal drugs, supplements and toxins in media and bodily fluids controls in vitro activities. Coord. Chem. Rev. 2017, 352, 473–498. 10.1016/j.ccr.2017.01.002. - DOI
    15. Azevedo C. G.; Correia I.; dos Santos M. M. C.; Santos M. F. A.; Santos-Silva T.; Doutch J.; Fernandes L.; Santos H. M.; Capelo J. L.; Pessoa J. C. Binding of vanadium to human serum transferrin - voltammetric and spectrometric studies. J. Inorg. Biochem. 2018, 180, 211–221. 10.1016/j.jinorgbio.2017.12.012. - DOI - PubMed
    1. Rehder D.Bioinorganic Vanadium Chemistry; John Wiley & Sons Ltd.: Chichester, 2008.
    1. Boukhobza I.; Crans D. C. Application of HPLC to measure vanadium in environmental, biological and clinical matrices. Arabian J. Chem. 2020, 13, 1198–1228. 10.1016/j.arabjc.2017.10.003. - DOI