Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Oct:313:123698.
doi: 10.1016/j.biortech.2020.123698. Epub 2020 Jun 16.

Facilitating sludge granulation and favoring glycogen accumulating organisms by increased salinity in an anaerobic/micro-aerobic simultaneous partial nitrification, denitrification and phosphorus removal (SPNDPR) process

Affiliations

Facilitating sludge granulation and favoring glycogen accumulating organisms by increased salinity in an anaerobic/micro-aerobic simultaneous partial nitrification, denitrification and phosphorus removal (SPNDPR) process

Chuansheng Yuan et al. Bioresour Technol. 2020 Oct.

Abstract

This study used salinity (0.5 wt%, 0.75 wt%) to accelerate the formation of ammonia oxidizing bacteria (AOB)-enriched aerobic granular sludge in a lab-scale anaerobic/micro-aerobic simultaneous partial nitrification, denitrification and phosphorus removal (SPNDPR) reactor. Results confirmed that the average granule diameter increased from 298.7 to 425.4 µm after 45 days of salinity stress even with low dissolved oxygen. Extracellular polymeric substances increased from 149.5 to 387.7 mg/g VSS after salinity (0.75 wt%) treatment, in turn accelerating granulation. Partial nitrification was maintained under the salinity condition due to the relative high activity and abundance of AOB, and the observed nitrite accumulation ratio averaged 98.9%. Salinity favored glycogen-accumulating organisms over polyphosphate-accumulating organisms (PAOs)/denitrifying-PAOs, with the abundance of Candidatus_Competibacter increasing from 4.86% to 15.34% and the simultaneous partial nitrification-denitrification efficiency increasing from 74.4% to 91.1%, promoting N-removal potential. The P-removal performance was good under 0.5 wt% salinity but was inhibited under 0.75 wt% salinity.

Keywords: Aerobic granular sludge; GAOs-PAOs competition; Partial nitrification; Salinity; Simultaneous nitrogen and phosphorus removal.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources