Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Feb;22(3):233-44.
doi: 10.1016/0045-6039(88)90015-2.

Organization of lymphocyte plasma membrane. Surface protein-membrane matrix interactions in B-cell lines of different stages of differentiation

Affiliations

Organization of lymphocyte plasma membrane. Surface protein-membrane matrix interactions in B-cell lines of different stages of differentiation

G Trenn et al. Cell Differ. 1988 Feb.

Abstract

Composition of surface proteins and their interactions with cytoskeleton or membrane matrix were compared in tumor B-cell lines of different stages of B-lymphocyte maturation. All studied B-cell lines were found to share a similar set of cell surface proteins, which are tightly associated with the cytoskeleton. The increase in amount of detergent-unextractable cell surface proteins with B-cell maturation suggested that differentiation of B lymphocytes was accompanied by development of specific interactions between surface proteins and elements of the cytoskeleton or membrane matrix. Using a recently developed procedure for lymphocyte plasma membrane fractionation we demonstrate changes in distribution of cell surface proteins in membrane matrix-rich and membrane matrix-poor plasma membrane fractions during B-lymphocyte maturation. Thus, cell surface proteins of the mature B-cell line MOPC-315 were predominantly found in the plasma membrane vesicles of a high buoyant density. These vesicles mostly contained plasma membrane proteins tightly associated with elements of the membrane matrix. In immature B cells (line 70Z3) virtually all surface proteins were detected in both low and high buoyant density membrane vesicles. The tendency to increased associations between surface proteins and cytoskeleton/membrane matrix with maturation of B cells could not be explained by increased amounts of filamentous actin, since no correlation was found between the amount of globular or filamentous actin and the degree of surface protein-cytoskeleton (membrane matrix) interactions.

PubMed Disclaimer

Publication types

LinkOut - more resources