Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun 19;24(6):1194-1198.
doi: 10.1021/acs.oprd.0c00083. Epub 2020 Apr 7.

An Economical Route to Lamivudine Featuring a Novel Strategy for Stereospecific Assembly

Affiliations

An Economical Route to Lamivudine Featuring a Novel Strategy for Stereospecific Assembly

David R Snead et al. Org Process Res Dev. .

Abstract

An economical synthesis of lamivudine was developed by employing a new method to establish the stereochemistry about the heterocyclic oxathiolane ring. Toward this end, an inexpensive and readily accessible lactic acid derivative served the dual purpose of activating the carbohydrate's anomeric center for N-glycosylation and transferring stereochemical information to the substrate simultaneously. Both enantiomers of the lactic acid derivative are available, and either β-enantiomer in this challenging class of 2'-deoxynucleoside active pharmaceutical ingredients can be formed.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
A successful strategy to control the stereochemistry of challenging 2′-deoxyoxathiolane nucleosides.
Figure 2
Figure 2
Anomeric acylation controls the proximal and remote stereochemistry of the oxathiolane ring system. Either enantiomer can be obtained, and the nucleating ability of the acyl handle enables isolation in high purity.
Figure 3
Figure 3
New route to lamivudine. (a) O3, then 1,4-dithiane-2,5-diol. (b) NaOMe. (c) PivCl and levamisole hydrochloride (1 mol %). (d) Br2 and mesitylene, then cytosine. (e) NaBH4.
Figure 4
Figure 4
Current manufacturing route developed at GSK.
Figure 5
Figure 5
(left) Stereoselective installation of a low-molecular-weight asymmetric glycosylation unit can decrease raw material costs for 3TC. (right) Theoretical cost of 3TC based on 100% yield in reduction and equivalent price of ester starting materials ($60/kg).

References

    1. Panos Z.; Fox J.; Prabhu V.. HIV Market Report, issue (10), , September 2019. http://clintonhealthaccess.org/wp-content/uploads/2019/12/2019-HIV-Marke... (accessed 2020-02-06).
    2. World Health Organization . HIV country profiles. https://www.who.int/hiv/data/profiles/en/ (accessed 2020-04-02).
    3. World Health Organization , Data on the size of the HIV/AIDS epidemic, https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/data-o... (accessed 2020-04-02).
    4. World Atlas . Countries with the Highest Rates of HIV/AIDS. https://www.worldatlas.com/articles/countries-with-the-highest-rates-of-... (accessed 2020-04-02).
    1. The commercial route was confirmed through conversation with manufacturers and by analysis of high-volume transaction records of API intermediates moving through the market (menthol glyoxylate and menthol ester of hydroxyl or cytosinyl oxathiolane).

    2. Goodyear M. D.; Dwyer P. O.; Hill M. L.; Whitehead A. J.; Hornby R.; Hallet P.. Process for the diastereoselective synthesis of nucleoside analogues. US 6051709, 2000.
    3. Goodyear M. D.; Hill M. L.; West J. P.; Whitehead A. J. Practical enantioselective synthesis of lamivudine (3TC) via a dynamic kinetic resolution. Tetrahedron Lett. 2005, 46, 8535–8538. 10.1016/j.tetlet.2005.10.002. - DOI
    1. Watanabe K. A.; Hollenberg D. H.; Fox J. J. Nucleosides. 85. On mechanisms of nucleoside synthesis by condensation reactions. J. Carbohydr., Nucleosides, Nucleotides 1974, 1, 1–37.
    2. Wilson L. J.; Hager M. W.; El-Kattan Y. A.; Liotta D. C. Nitrogen lycosylation reactions involving pyrimidine and purine nucleoside bases with furanoside sugars. Synthesis 1995, 1995, 1465–1479. 10.1055/s-1995-4142. - DOI
    3. Mukaiyama T.; Hirano N.; Nishida M.; Uchiro H. Catalytic stereoselective synthesis of pyrimidine 2-deoxyribonucleosides. Chem. Lett. 1996, 25, 99–100. 10.1246/cl.1996.99. - DOI
    4. McLaughlin M.; Kong J.; Belyk K. M.; Chen B.; Gibson A. W.; Keen S. P.; Lieberman D. R.; Milczek E. M.; Moore J. C.; Murray D.; Qi J.; Peng F.; Reamer R. A.; Song Z. J.; Tan L.; Wang L.; Williams M. J. Enantioselective synthesis of 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) via enzymatic desymmetrization. Org. Lett. 2017, 19, 926–929. 10.1021/acs.orglett.7b00091. - DOI - PubMed
    1. Jeong L. S.; Schinazi R. F.; Beach W. J.; Kim H. O.; Nampalli S.; Shanmuganathan K.; Alves A. J.; McMillan A.; Chu C. K.; Mathis R. Asymmetric synthesis and biological evaluation of β-l-(2R,5S)- and α-l-(2R,5R)-1,3-oxathiolane-pyrimidine and -purine nucleosides as potential anti-HIV agents. J. Med. Chem. 1993, 36, 181–195. 10.1021/jm00054a001. - DOI - PubMed
    2. Hu L.; Schaufelberger F.; Zhang Y.; Ramström O. Efficient asymmetric synthesis of lamivudine via enzymatic dynamic kinetic resolution. Chem. Commun. 2013, 49, 10376–10378. 10.1039/c3cc45551c. - DOI - PubMed
    1. Hoong L. K.; Strange L. E.; Liotta D. C.; Koszalka G. W.; Burns C. L.; Schinazi R. F. Enzyme-mediated enantioselective preparation of pure enantiomers of the antiviral agent 2′,3′-dideoxy-5-fluoro-3′-thiacytidine (FTC) and related compounds. J. Org. Chem. 1992, 57, 5563–5565. 10.1021/jo00047a004. - DOI
    2. Mahmoudian M.; Baines B. S.; Drake C. S.; Hale R. S.; Jones P.; Piercey J. E.; Montgomery D. S.; Purvis I. J.; Storer R.; Dawson M. J.; Lawrence G. C. Enzymatic production of optically pure (2′R-cis)-2′-deoxy-3′-thiacytidine (3TC, Lamivudine): A potent anti-HIV agent. Enzyme Microb. Technol. 1993, 15, 749–755. 10.1016/0141-0229(93)90005-M. - DOI - PubMed
    3. Milton J.; Brand S.; Jones M. F.; Rayner C. M. Enzymatic Resolution of α-acetoxysulfides: A new approach to the synthesis of homochiral S, O-Acetals. Tetrahedron: Asymmetry 1995, 6, 1903–1906. 10.1016/0957-4166(95)00248-N. - DOI
    4. Milton J.; Brand S.; Jones M. F.; Rayner C. M. Enantioselective enzymatic synthesis of the anti-viral agent lamivudine (3TC). Tetrahedron Lett. 1995, 36, 6961–6964. 10.1016/0040-4039(95)01380-Z. - DOI
    5. Cousins R. P. C.; Mahmoudian M.; Youds P. M. Enantioselective enzymatic synthesis of the anti-viral agent lamivudine (3TC). Tetrahedron: Asymmetry 1995, 6, 393–396. 10.1016/0957-4166(95)00022-H. - DOI
    6. Jin H.; Siddiqui A.; Evans C. A.; Tse H. L. A.; Mansour T. S.; Goodyear M. D.; Ravenscroft P.; Beels C. D. Diastereoselective synthesis of the potent antiviral agent (−)-2′-deoxy-3′-thiacytidine and its enantiomer. J. Org. Chem. 1995, 60, 2621–2623. 10.1021/jo00113a050. - DOI
    7. Li J.-Z.; Gao L.-X.; Ding M.-X. The chemical resolution of racemic cis-2-hydroxymethyl-5-(cytosine-1′-yl)-1,3-oxathiolane (BCH-189)—One direct method to obtain lamivudine as anti-HIV and anti-HBV agent. Synth. Commun. 2002, 32, 2355–2359. 10.1081/SCC-120006006. - DOI
    8. Roy B. N.; Singh G. P.; Srivastava D.; Jadhav H. S.; Saini M. B.; Aher U. P. A Novel Method for Large-Scale Synthesis of Lamivudine through Cocrystal Formation of Racemic Lamivudine with (S)-(−)-1,1′-Bi(2-naphthol) [(S)-(BINOL)]. Org. Process Res. Dev. 2009, 13, 450–455. 10.1021/op800228h. - DOI
    9. Reddy B. P.; Reddy K. R.; Reddy R. R.; Reddy D. M.; Srinivas A. S.. Optical resolution of substituted 1,3-oxathiolane nucleosides. US 20110245497, 2011.