Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Mar 8;443(1-2):101-16.
doi: 10.1016/0006-8993(88)91603-4.

Dopamine-releasing action of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridine (MPP+) in the neostriatum of the rat as demonstrated in vivo by the push-pull perfusion technique: dependence on sodium but not calcium ions

Affiliations

Dopamine-releasing action of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridine (MPP+) in the neostriatum of the rat as demonstrated in vivo by the push-pull perfusion technique: dependence on sodium but not calcium ions

D J Sirinathsinghji et al. Brain Res. .

Abstract

This study examined the effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its metabolite, 1-methyl-4-phenylpyridine (MPP+) on the levels of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in push-pull perfusates of the striatum in chloral hydrate-anaesthetized rats. In control animals the levels of DA and DOPAC remained stable for at least 6 h and responded rapidly to a depolarizing stimulus of 25 mM K+. This K+-induced DA release was Ca2+-dependent since no stimulation was observed when the striatal sites were perfused with high K+ in a Ca2+-free medium containing 2 mM EGTA thus verifying that the striatal sites were functionally active. MPTP (0.025 and 0.05 microgram/microliter) stimulated DA release and inhibited DOPAC output in a dose-related manner. MPP+ (0.01, 0.025 and 0.05 microgram/microliter) produced a more robust dose-dependent increase in DA levels in the perfusates; however, the level of suppression of DOPAC was similar to that in response to MPTP. The effect of MPP+ on DA release was attenuated by 10(-6) M benztropine, the DA re-uptake blocker and completely inhibited by 10 micrograms/kg i.p. benztropine and 10(-4) M ouabain, the Na+, K+-ATPase (Na pump) inhibitor. However, although these substances prevented the MPP+-induced release of DA, the levels of DOPAC in the perfusates did not recover and remained completely suppressed suggesting that MPP+ may inhibit extraneuronal rather than intraneuronal monoamine oxidase (MAO). Perfusion of the striatal sites with a Ca2+-free medium containing 2 mM EGTA did not prevent the MPP+-induced DA release indicating that MPP+ does not release DA from the striatal DA terminals by the Ca2+-dependent process of exocytosis. The responses of DA and DOPAC to 25 mM K+ were markedly suppressed in animals treated with MPTP and MPP+, these effects being most severe with the highest dose of MPP+. Moreover, this suppression of the K+-induced responses persisted in animals perfused with MPP+ in the presence of benztropine or ouabain, thus suggesting that MPP+ may have potent deleterious membrane effects. These studies have provided the first direct in vivo demonstration of the action of MPTP and MPP+ and the neuropharmacological basis of this action on DA metabolism in the rat striatum. The results show that the elevated levels of DA in the striatal perfusates are due to a direct action of MPTP and MPP+ on the nigrostriatal DA terminals and cannot be fully accounted for solely by their inhibition of MAO activity and/or inhibition of DA re-uptake.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources