Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul 17;22(14):5462-5465.
doi: 10.1021/acs.orglett.0c01834. Epub 2020 Jun 26.

Hexafluoroisopropanol-Promoted Disulfidation and Diselenation of Alkyne, Alkene, and Allene

Affiliations

Hexafluoroisopropanol-Promoted Disulfidation and Diselenation of Alkyne, Alkene, and Allene

Chiyu Wei et al. Org Lett. .

Abstract

Hexafluoroisopropanol (HFIP)-promoted disulfidation and diselenation of C-C unsaturated bonds is reported. Reactions of unactivated alkyne, alkene, and allene, respectively, with disulfides or diselenides in HFIP led to desired products in good to excellent yields (up to 96%). In contrast, other solvents, such as isopropanol and dichloroethane, could not promote the same reaction. This method revealed an example of HFIP-promoted transformations under the mild conditions, which greatly highlighted the unique reactivity of this special solvent.

PubMed Disclaimer

Conflict of interest statement

The authors claim no competing financial interest.

Figures

Figure 1.
Figure 1.
HFIP promoted internal alkyne diselenation
Figure 2.
Figure 2.
Disulfidation and diselenation reactions
Scheme 1.
Scheme 1.
HFIP promoted challenging transformations
Scheme 2.
Scheme 2.
HFIP Promoted Alkyne Diselenationa aReaction conditions: alkyne (0.4 mmol) and diselenide (0.2 mmol) were added into HFIP:HFA = 19:1 (1 mL), and the mixture was stirred at 60 °C for 24 h. Isolated yield. b3 days. cUnder room temperature. d12 h.

References

    1. Corey EJ Angew. Chem. Int. Ed 1991, 30, 455–465.
    2. Nicolaou KC; Bulger PG; Sarlah D Angew. Chem. Int. Ed 2005, 44, 4442–4489. - PubMed
    3. Nicolaou KC; Bulger PG; Sarlah D Angew. Chem. Int. Ed 2005, 44, 4490–4527. - PubMed
    4. Nicolaou KC; Chen JS Chem. Soc. Rev 2009, 38, 2993–3009. - PMC - PubMed
    5. Nicolaou KC; Edmonds DJ; Bulger PG Angew. Chem. Int. Ed 2006, 45, 7134–7186. - PubMed
    6. Nicolaou KC; Snyder SA; Montagnon T; Vassilikogiannakis G Angew. Chem. Int. Ed 2002, 41, 1668–1698. - PubMed
    7. Nicolaou KC; Vourloumis D; Winssinger N; Baran PS Angew. Chem. Int. Ed 2000, 39, 44–122. - PubMed
    8. Tasker SZ; Standley EA; Jamison TF Nature 2014, 509, 299–309. - PMC - PubMed
    9. Parmar D; Sugiono E; Raja S; Rueping M Chem. Rev 2014, 114, 9047–9153. - PubMed
    10. Akiyama T; Itoh J; Fuchibe K Adv. Synth. Catal 2006, 348, 999–1010.
    11. Hashmi ASK; Hutchings GJ Angew. Chem. Int. Ed 2006, 45, 7896–7936. - PubMed
    12. Noyori R; Hashiguchi S Acc. Chem. Res 1997, 30, 97–102.
    13. Colby DA; Bergman RG; Ellman JA Chem. Rev 2010, 110, 624–655. - PMC - PubMed
    14. Ley SV; Thomas AW Angew. Chem. Int. Ed 2003, 42, 5400–5449. - PubMed
    15. Herrmann WA Angew. Chem. Int. Ed 2002, 41, 1290–1309. - PubMed
    16. Prier CK; Rankic DA; MacMillan DW C. Chem. Rev 2013, 113, 5322–5363. - PMC - PubMed
    17. Furstner A Angew. Chem. Int. Ed 2000, 39, 3012–3043. - PubMed
    18. Yan M; Kawamata Y; Baran PS Chem. Rev 2017, 117, 13230–13319. - PMC - PubMed
    1. Shuklov IA; Dubrovina NV; Boerner A Synthesis 2007, 2925–2943.
    2. de Visser SP; Kaneti J; Neumann R; Shaik SJ Org. Chem 2003, 68, 2903–2912. - PubMed
    3. Kirste A; Elsler B; Schnakenburg G; Waldvogel SR J. Am. Chem. Soc 2012, 134, 3571–3576. - PubMed
    4. De K; Legros J; Crousse B; Bonnet-Delpon DJ Org. Chem 2009, 74, 6260–6265. - PubMed
    5. Arai T; Yokoyama N Angew. Chem. Int. Ed 2008, 47, 4989–4992. - PubMed
    6. Marques A-S; Duhail T; Marrot J; Chataigner I; Coeffard V; Vincent G; Moreau X Angew. Chem. Int. Ed 2019, 58, 9969–9973. - PubMed
    7. Wasserscheid P; Keim W Angew. Chem. Int. Ed 2000, 39, 3772–3789. - PubMed
    1. Purser S; Moore PR; Swallow S; Gouverneur V Chem. Soc. Rev 2008, 37, 320–330. - PubMed
    2. O’Hagan D Chem. Soc. Rev 2008, 37, 308–319. - PubMed
    3. Furuya T; Kamlet AS; Ritter T Nature 2011, 473, 470–477. - PMC - PubMed
    4. Shimizu M; Hiyama T Angew. Chem. Int. Ed 2005, 44, 214–231. - PubMed
    5. Berger R; Resnati G; Metrangolo P; Weber E; Hulliger J Chem. Soc. Rev 2011, 40, 3496–3508. - PubMed
    6. Begue JP; Bonnet-Delpon DJ Fluor. Chem 2006, 127, 992–1012.
    1. Dherbassy Q; Schwertz G; Chessé M; Hazra CK; Wencel-Delord J; Colobert F Chem. Eur. J 2016, 22, 1735–1743. - PubMed
    2. Wencel-Delord J; Colobert F Org. Chem. Front 2016, 3, 394–400.
    3. Colomer I; Chamberlain AER; Haughey MB; Donohoe TJ Nat. Rev. Chem 2017, 1, 12.
    4. Elsler B; Wiebe A; Schollmeyer D; Dyballa KM; Franke R; Waldvogel SR Chem. Eur. J 2015, 21, 12321–12325. - PubMed
    5. Wiebe A; Schollmeyer D; Dyballa KM; Franke R; Waldvogel SR Angew. Chem. Int. Ed 2016, 55, 11801–11805. - PubMed
    6. Wang H; Moselage M; Gonzalez MJ; Ackermann L ACS Catal. 2016, 6, 2705–2709.
    7. Trillo P; Baeza A; Najera CJ Org. Chem 2012, 77, 7344–7354. - PubMed
    8. Gaster E; Vainer Y; Regev A; Narute S; Sudheendran K; Werbeloff A; Shalit H; Pappo D Angew. Chem. Int. Ed 2015, 54, 4198–4202. - PubMed
    9. Tao Z; Robb KA; Zhao K; Denmark SE J. Am. Chem. Soc 2018, 140, 3569–3573. - PMC - PubMed
    10. Berkessel A; Adrio JA; Huettenhain D; Neudorfl JM J. Am. Chem. Soc 2006, 128, 8421–8426. - PubMed
    1. Takahashi I; Fujita T; Shoji N; Ichikawa J Chem. Commun 2019, 55, 9267–9270. - PubMed

Publication types