Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Aug:80:1-17.
doi: 10.1016/j.nutres.2020.05.005. Epub 2020 May 16.

Caffeine effects on systemic metabolism, oxidative-inflammatory pathways, and exercise performance

Affiliations
Free article
Review

Caffeine effects on systemic metabolism, oxidative-inflammatory pathways, and exercise performance

Rômulo P Barcelos et al. Nutr Res. 2020 Aug.
Free article

Abstract

Caffeine, a xanthine alkaloid compound, is consumed widely and daily by humans, as it is present in several regular beverages such as tea, coffee, soda beverages, and some drugs. Its consumption triggers arousal and alertness, improves mood, and causes the release of catecholamines, which induce beneficial effects on human behavior. Nonetheless, caffeine has been related to other beneficial effects such as antioxidant and anti-inflammatory actions that are extremely important to human health, altering the cellular redox and inflammatory status in a dose-dependent manner. Caffeine intake has also shown ergogenic effects, which are attributed to different factors, such as enhanced substrate utilization, fatigue delay, and alertness. As such, caffeine has been consumed by athletes from different sports modalities, with positive and negative effects declared. Although peripheral tissues such as the heart, skeletal muscle, and adipocytes are also impacted, there is a deficit of recognized mechanisms in systemic metabolism when compared to caffeine action in the central nervous system. This review summarizes the most relevant classical and current literature available regarding the use of caffeine in different metabolic situations, such as oxidative and inflammatory status, as well as anaerobic and aerobic physical exercises. Here, we identified the non-central nervous system caffeine mechanisms modulation, as most are still unknown or controversial, highlighting its influence in the peripheral system and its essential and crucial impacts on the human's organism adaptation.

Keywords: Aerobic exercise; Anaerobic exercise; Coffee; Inflammation; Oxidative stress; Peripheral system.

PubMed Disclaimer

Publication types

MeSH terms