Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Jan;43(1):255-277.
doi: 10.1002/hbm.25096. Epub 2020 Jun 29.

Mega-analysis methods in ENIGMA: The experience of the generalized anxiety disorder working group

André Zugman  1 Anita Harrewijn  1 Elise M Cardinale  1 Hannah Zwiebel  1 Gabrielle F Freitag  1 Katy E Werwath  1 Janna M Bas-Hoogendam  2   3   4 Nynke A Groenewold  5 Moji Aghajani  6   7 Kevin Hilbert  8 Narcis Cardoner  9   10   11 Daniel Porta-Casteràs  9   10   11 Savannah Gosnell  12 Ramiro Salas  12 Karina S Blair  13 James R Blair  13 Mira Z Hammoud  14 Mohammed Milad  14 Katie Burkhouse  15 K Luan Phan  16 Heidi K Schroeder  17 Jeffrey R Strawn  17 Katja Beesdo-Baum  18 Sophia I Thomopoulos  19 Hans J Grabe  20   21 Sandra Van der Auwera  20   21 Katharina Wittfeld  20   21 Jared A Nielsen  22   23 Randy Buckner  22   23   24 Jordan W Smoller  24 Benson Mwangi  25 Jair C Soares  25 Mon-Ju Wu  25 Giovana B Zunta-Soares  25 Andrea P Jackowski  26 Pedro M Pan  26 Giovanni A Salum  27 Michal Assaf  28   29 Gretchen J Diefenbach  30   31 Paolo Brambilla  32 Eleonora Maggioni  32 David Hofmann  33 Thomas Straube  33 Carmen Andreescu  34 Rachel Berta  34 Erica Tamburo  34 Rebecca Price  35 Gisele G Manfro  36   37 Hugo D Critchley  38 Elena Makovac  39 Matteo Mancini  38 Frances Meeten  40 Cristina Ottaviani  41 Federica Agosta  42   43 Elisa Canu  42 Camilla Cividini  42 Massimo Filippi  42   43   44 Milutin Kostić  45   46 Ana Munjiza  45 Courtney A Filippi  1 Ellen Leibenluft  1 Bianca A V Alberton  47 Nicholas L Balderston  48 Monique Ernst  1 Christian Grillon  1 Lilianne R Mujica-Parodi  49 Helena van Nieuwenhuizen  50 Gregory A Fonzo  51 Martin P Paulus  52 Murray B Stein  53 Raquel E Gur  54 Ruben C Gur  54 Antonia N Kaczkurkin  54 Bart Larsen  54 Theodore D Satterthwaite  54 Jennifer Harper  55 Michael Myers  55 Michael T Perino  55 Qiongru Yu  55 Chad M Sylvester  55 Dick J Veltman  6 Ulrike Lueken  8 Nic J A Van der Wee  2   3 Dan J Stein  5   56 Neda Jahanshad  19 Paul M Thompson  19 Daniel S Pine  1 Anderson M Winkler  1
Affiliations
Review

Mega-analysis methods in ENIGMA: The experience of the generalized anxiety disorder working group

André Zugman et al. Hum Brain Mapp. 2022 Jan.

Abstract

The ENIGMA group on Generalized Anxiety Disorder (ENIGMA-Anxiety/GAD) is part of a broader effort to investigate anxiety disorders using imaging and genetic data across multiple sites worldwide. The group is actively conducting a mega-analysis of a large number of brain structural scans. In this process, the group was confronted with many methodological challenges related to study planning and implementation, between-country transfer of subject-level data, quality control of a considerable amount of imaging data, and choices related to statistical methods and efficient use of resources. This report summarizes the background information and rationale for the various methodological decisions, as well as the approach taken to implement them. The goal is to document the approach and help guide other research groups working with large brain imaging data sets as they develop their own analytic pipelines for mega-analyses.

Keywords: data sharing; generalized anxiety disorder; mega-analyses; meta-analyses; neuroimaging.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Differences between classical, literature‐based meta‐analyses, conducted without access to individual participant data (IPD) (upper panel) versus approaches used by different ENIGMA working groups, in which researchers, collectively, have access to IPD (lower panel). The latter encompasses three main approaches (top) data are processed using common methods at each site, then summary statistics are computed and sent to a coordinating facility which then conducts a meta‐analysis; (middle) data are processed using common methods at each site, then sent to the coordinating facility which then conducts a mega‐analysis; and (bottom) raw data are sent to the coordinating facility which then processes the data in batch and conducts a mega‐analysis, while taking site‐specific effects into account
FIGURE 2
FIGURE 2
Example screenshot of a report of image quality for the subjects of one site. Box plots of various metrics are shown. The report is produced by the tool MRIQC, available, along with documentation that details all the metrics (many more than shown in the figure), at https://mriqc.readthedocs.io
FIGURE 3
FIGURE 3
Surface reconstructions of the cortex of the right hemisphere based on different resolutions of a recursively subdivided icosahedron. The default in FreeSurfer uses n = 7 recursions, resulting in a total of 163,842 vertices. Considerable computational savings can be obtained with lower resolutions (such as with n = 4 or 5) without substantial losses in localizing power. V, number of vertices; E, number of edges; F, number of triangular faces
FIGURE 4
FIGURE 4
Example report pages with multiple views of the cortical surfaces (front) and slices of subcortical volumes (back). Pial surfaces are shown, but inspection can use white and inflated; slices with subcortical volumes can be complemented with surface overlays. The script that generates these pages uses FreeSurfer scripting to automate the operation of the tools “tkmedit” and “tksurfer,” and is available at https://brainder.org

References

    1. Abramian, D. , & Eklund, A. (2019). Refacing: reconstructing anonymized facial features using GANS. IEEE 16th International Symposium on Biomedical Imaging, Venice, Italy, pp. 1104–1108.
    1. Adhikari, B. M. , Jahanshad, N. , Shukla, D. , Turner, J. , Grotegerd, D. , Dannlowski, U. , … Kochunov, P. (2018). A resting state fMRI analysis pipeline for pooling inference across diverse cohorts: An ENIGMA rs‐fMRI protocol. Brain Imaging and Behavior, 13(5), 1453–1467. 10.1007/s11682-018-9941-x - DOI - PMC - PubMed
    1. Alberton Bianca A. V., Nichols Thomas E., Gamba Humberto R., Winkler Anderson M. (2020). Multiple testing correction over contrasts for brain imaging. NeuroImage, 216, 116760. 10.1016/j.neuroimage.2020.116760. - DOI - PMC - PubMed
    1. Alfaro‐Almagro, F. , Jenkinson, M. , Bangerter, N. K. , Andersson, J. L. R. , Griffanti, L. , Douaud, G. , … Smith, S. M. (2018). Image processing and quality control for the first 10,000 brain imaging datasets from UKbiobank. NeuroImage, 166, 400–424. 10.1016/j.neuroimage.2017.10.034 - DOI - PMC - PubMed
    1. Alfino, M. , & Mayes, G. R. (2003). Reconstructing the right to privacy. Social Theory and Practice, 29(1), 1–18. 10.5840/soctheorpract20032915 - DOI

Publication types

MeSH terms