Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Nov 20;44(4-6):342-358.
doi: 10.1080/01913123.2020.1786203. Epub 2020 Jun 30.

Duration-dependent effects induced by titanium dioxide nanoparticles on pancreas of adult male albino rats (histological and biochemical study)

Affiliations

Duration-dependent effects induced by titanium dioxide nanoparticles on pancreas of adult male albino rats (histological and biochemical study)

Sara M Abdel Aal et al. Ultrastruct Pathol. .

Abstract

Titanium dioxide nanoparticles (TiO2NPs) have been widely used in numerous applications and enter the human body through different routes. This study aimed to investigate the effect of intraperitoneal TiO2NPs on the histological and biochemical structure of rat pancreas. Fifty adult male albino rats were divided into four groups. Group I (control) was equally divided into two subgroups. Groups II, III, and IV: rats received intraperitoneal TiO2NPs for 7, 14, and 45 days, respectively. Blood samples were taken for the estimation of blood glucose, serum insulin, serum α-amylase, and lipase activity levels. Sections of the pancreas were processed for light, electron microscope examination, and immunohistochemical detection of insulin protein. Other parts were exposed to Real-Time Polymerase Chain Reaction for Bax, Bcl-2, SOD, and GST mRNA gene expression. Results showed pancreatic tissue damage, including acinar and islet cells, which became worse with increased duration of exposure to TiO2NPs. Decreased immune expression of the insulin protein together with decreased serum insulin and increased blood glucose levels indicated the alteration of β cells. Decreased serum α-amylase and lipase activities indicated alteration of acinar cells. Increased Bax and decreased Bcl-2 mRNA expression levels showed the apoptotic effect of TiO2NPs caused by oxidative stress and evidenced by a significant reduction in the mRNA expression of SOD and GST in a duration-dependent manner. In conclusion: the present study stated that TiO2NPs exposure for long durations had toxic effects on both exocrine and endocrine pancreas mediated by apoptotic and oxidative stress pathways.

Keywords: Titanium dioxide nanoparticles; biochemistry; histology; rat pancreas.

PubMed Disclaimer

LinkOut - more resources