Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020;22(14):1480-1486.
doi: 10.1080/15226514.2020.1782829. Epub 2020 Jun 30.

Sustainable treatment of domestic wastewater through microalgae

Affiliations

Sustainable treatment of domestic wastewater through microalgae

Nandini Moondra et al. Int J Phytoremediation. 2020.

Abstract

The present work evaluated the optimum concentration of microalgal cells for domestic wastewater treatment in terms of removal in nutrients and physicochemical parameters. In the study, three different concentrations (20, 30, and 40%) of microalgae was considered at 8 hours and 24 hours of Hydraulic Retention time (HRT). Among the different microalgal concentrations studied 30% microalgae concentration gave maximum removal at both the HRTs. The maximum removal efficiency of phosphate, ammonia and COD for the non-filtered sample was 87.67, 96.88, and 80.39%, respectively, for filtered sample it was about 91.32, 100, and 83.64%, respectively at 8 hours HRT. However, at 24 hours HRT maximum removal efficiency observed was 97.92, 92.22, and 93.47% for ammonia, COD and phosphate respectively in case of non-filtered sample whereas in filtered samples maximum removal efficiency was 100, 94.44, and 95.51% for ammonia, COD and phosphate respectively. From the study, it was found that microalgae can effectively remove nutrients and organic contents to desirable limits even at a low HRT of 8 hours. At the urban sector, if microalgae are incorporated in a conventional wastewater treatment system will enhance the cost-effective efficiency by lowering the HRT and increasing the removal efficiency with footprints of sustainable treatment.

Keywords: Biological treatment; domestic wastewater; microalgae.

PubMed Disclaimer

LinkOut - more resources