Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul:246:108726.
doi: 10.1016/j.vetmic.2020.108726. Epub 2020 May 17.

First report of porcine respirovirus 1 in South America

Affiliations

First report of porcine respirovirus 1 in South America

B Agüero et al. Vet Microbiol. 2020 Jul.

Abstract

Porcine respirovirus 1 (PRV1) is an emerging virus in pigs that has been previously described in the USA and China. There are no reports of its presence in the rest of the world. The objective of this study was to determine the occurrence of PRV1 in Chile and to determine its phylogeny. Thus, we collected samples (oral fluids, nasal swabs, and lungs) from a swine influenza A virus (IAV) surveillance program, most of which belonged to pigs with respiratory disease. The samples were analyzed by RT-PCR, and the viral sequencing was obtained using RNA whole-genome sequencing approach. Maximum likelihood phylogeny was constructed with the available references. Thirty-one of 164 samples (18.9 %) were RT-PCR positive for PRV1: 62.5 % oral fluids, 19.0 % nasal swabs, and 8.6 % lungs. All 6 farms in this study had at least one positive sample, with 6-40 % of positive results per farm, which suggests that PRV1 is disseminated in Chilean swine farms. Twenty-one of 31 (677%) PRV1-positive samples were also positive for IAV, so the role of PRV1 as secondary pathogen in respiratory disease needs to be further evaluated. Near to complete genome of two PRV1s were obtained from two farms. The phylogenies, in general, showed low bootstrap support, except the concatenated genome and the L gene trees which showed clustering of the Chilean PRV1 with Asian sequences, suggesting a close genetic relationship. This is the first report of PRV1 in the Southern Hemisphere. Further studies are necessary to determine the genetic diversity of this virus in Chile.

Keywords: Chile; Porcine parainfluenza virus 1; Porcine respirovirus 1; South America; Swine.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare no conflict of interest.

Figures

Figure 1.
Figure 1.. Phylogenetic analysis of amino acid sequences of PRV1.
Phylogenetic trees were constructed using the sequences obtained in this study and all PRV1 sequences available in GenBank. Human respirovirus 1 was used as outgroup. The phylogenetic trees were inferred using maximum likelihood method in IQ-TREE based on the model FLU+G4 for the genome, fusion and HN protein and JTT+G4 for L protein with 1000 bootstrap replicates. Bootstrap values are indicated at each node. The Chilean strain is represented in red, purple for Chinese and blue for the USA strains. GenBank accession numbers for each sequence are given next to strain name

References

    1. Amarasinghe GK, Aréchiga Ceballos NG, Banyard AC, Basler CF, Bavari S, Bennett AJ, Blasdell KR, Briese T, Bukreyev A, Caì Y, Calisher CH, Campos Lawson C, Chandran K, Chapman CA, Chiu CY, Choi K-S, Collins PL, Dietzgen RG, Dolja VV, Dolnik O, Domier LL, Dürrwald R, Dye JM, Easton AJ, Ebihara H, Echevarría JE, Fooks AR, Formenty PBH, Fouchier RAM, Freuling CM, Ghedin E, Goldberg TL, Hewson R, Horie M, Hyndman TH, Jiāng D, Kityo R, Kobinger GP, Kondō H, Koonin EV, Krupovic M, Kurath G, Lamb RA, Lee B, Leroy EM, Maes P, Maisner A, Marston DA, Mor SK, Müller T, Mühlberger E, Ramírez VMN, Netesov SV, Ng TFF, Nowotny N, Palacios G, Patterson JL, Pawęska JT, Payne SL, Prieto K, Rima BK, Rota P, Rubbenstroth D, Schwemmle M, Siddell S, Smither SJ, Song Q, Song T, Stenglein MD, Stone DM, Takada A, Tesh RB, Thomazelli LM, Tomonaga K, Tordo N, Towner JS, Vasilakis N, Vázquez-Morón S, Verdugo C, Volchkov VE, Wahl V, Walker PJ, Wang D, Wang L-F, Wellehan JFX, Wiley MR, Whitfield AE, Wolf YI, Yè G, Zhāng Y-Z, Kuhn JH, 2018. Taxonomy of the order Mononegavirales: update 2018. Arch. Virol 1–12. doi:10.1007/s00705-018-3814-x - DOI - PMC - PubMed
    1. Amarasinghe GK, Ayllón MA, Bào Y, Basler CF, Bavari S, Blasdell KR, Briese T, Brown PA, Bukreyev A, Balkema-Buschmann A, Buchholz UJ, Chabi-Jesus C, Chandran K, Chiapponi C, Crozier I, de Swart RL, Dietzgen RG, Dolnik O, Drexler JF, Dürrwald R, Dundon WG, Duprex WP, Dye JM, Easton AJ, Fooks AR, Formenty PBH, Fouchier RAM, Freitas-Astúa J, Griffiths A, Hewson R, Horie M, Hyndman TH, Jiāng D, Kitajima EW, Kobinger GP, Kondō H, Kurath G, Kuzmin IV, Lamb RA, Lavazza A, Lee B, Lelli D, Leroy EM, Lǐ J, Maes P, Marzano SYL, Moreno A, Mühlberger E, Netesov SV, Nowotny N, Nylund A, Økland AL, Palacios G, Pályi B, Pawęska JT, Payne SL, Prosperi A, Ramos-González PL, Rima BK, Rota P, Rubbenstroth D, Shī M, Simmonds P, Smither SJ, Sozzi E, Spann K, Stenglein MD, Stone DM, Takada A, Tesh RB, Tomonaga K, Tordo N, Towner JS, van den Hoogen B, Vasilakis N, Wahl V, Walker PJ, Wang LF, Whitfield AE, Williams JV, Zerbini FM, Zhāng T, Zhang YZ, Kuhn JH, 2019. Taxonomy of the order Mononegavirales: update 2019. Arch. Virol 164, 1967–1980. doi:10.1007/s00705-019-04247-4 - DOI - PMC - PubMed
    1. Bolger AM, Lohse M, Usadel B, 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. doi:10.1093/bioinformatics/btu170 - DOI - PMC - PubMed
    1. Eberle KC, McGill JL, Reinhardt TA, Sacco RE, 2016. Parainfluenza Virus 3 Blocks Antiviral Mediators Downstream of the Interferon Lambda Receptor by Modulating Stat1 Phosphorylation. J. Virol 90, 2948–2958. doi:10.1128/jvi.02502-15 - DOI - PMC - PubMed
    1. Edgar RC, 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797. doi:10.1093/nar/gkh340 - DOI - PMC - PubMed

LinkOut - more resources