This is a preprint.
A facile Q-RT-PCR assay for monitoring SARS-CoV-2 growth in cell culture
- PMID: 32607508
- PMCID: PMC7325174
- DOI: 10.1101/2020.06.26.174698
A facile Q-RT-PCR assay for monitoring SARS-CoV-2 growth in cell culture
Update in
-
A Simplified Quantitative Real-Time PCR Assay for Monitoring SARS-CoV-2 Growth in Cell Culture.mSphere. 2020 Sep 2;5(5):e00658-20. doi: 10.1128/mSphere.00658-20. mSphere. 2020. PMID: 32878932 Free PMC article.
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of the ongoing COVID-19 pandemic, has infected millions within just a few months and is continuing to spread around the globe causing immense respiratory disease and mortality. Assays to monitor SARS-CoV-2 growth depend on time-consuming and costly RNA extraction steps, hampering progress in basic research and drug development efforts. Here we developed a facile Q-RT-PCR assay that bypasses viral RNA extraction steps and can monitor SARS-CoV-2 replication kinetics from a small amount of cell culture supernatants. Using this assay, we screened the activities of a number of entry, SARS-CoV-2- and HIV-1-specific inhibitors in a proof of concept study. In line with previous studies which has shown that processing of the viral Spike protein by cellular proteases and endosomal fusion are required for entry, we found that E64D and apilimod potently decreased the amount of SARS-CoV-2 RNA in cell culture supernatants with minimal cytotoxicity. Surprisingly, we found that macropinocytosis inhibitor EIPA similarly decreased viral RNA in supernatants suggesting that entry may additionally be mediated by an alternative pathway. HIV-1-specific inhibitors nevirapine (an NNRTI), amprenavir (a protease inhibitor), and ALLINI-2 (an allosteric integrase inhibitor) modestly inhibited SARS-CoV-2 replication, albeit the IC 50 values were much higher than that required for HIV-1. Taken together, this facile assay will undoubtedly expedite basic SARS-CoV-2 research, be amenable to mid-throughput screens to identify chemical inhibitors of SARS-CoV-2, and be applicable to a broad number of RNA and DNA viruses.
Figures
References
-
- Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:270–273. - PMC - PubMed
-
- Chan JF, Yip CC, To KK, Tang TH, Wong SC, Leung KH, Fung AY, Ng AC, Zou Z, Tsoi HW, Choi GK, Tam AR, Cheng VC, Chan KH, Tsang OT, Yuen KY. 2020. Improved Molecular Diagnosis of COVID-19 by the Novel, Highly Sensitive and Specific COVID-19-RdRp/Hel Real-Time Reverse Transcription-PCR Assay Validated In Vitro and with Clinical Specimens. J Clin Microbiol 58. - PMC - PubMed
-
- Pizzato M, Erlwein O, Bonsall D, Kaye S, Muir D, McClure MO. 2009. A one-step SYBR Green I-based product-enhanced reverse transcriptase assay for the quantitation of retroviruses in cell culture supernatants. J Virol Methods 156:1–7. - PubMed
-
- Sheahan TP, Sims AC, Leist SR, Schafer A, Won J, Brown AJ, Montgomery SA, Hogg A, Babusis D, Clarke MO, Spahn JE, Bauer L, Sellers S, Porter D, Feng JY, Cihlar T, Jordan R, Denison MR, Baric RS. 2020. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 11:222. - PMC - PubMed
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous