Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Jun;53(6):849-55.
doi: 10.1016/S0006-3495(88)83165-5.

Dependency of the force-velocity relationships on Mg ATP in different types of muscle fibers from Xenopus laevis

Affiliations

Dependency of the force-velocity relationships on Mg ATP in different types of muscle fibers from Xenopus laevis

G J Stienen et al. Biophys J. 1988 Jun.

Abstract

MgATP binding to the actomyosin complex is followed by the dissociation of actin and myosin. The rate of this dissociation process was determined from the relationship between the maximum velocity of shortening and the MgATP concentration. It is shown here that the overall dissociation rate is rather similar in different types of muscle fibers. The relation between MgATP concentration and the maximum shortening velocity was investigated in fast and slow fibers and bundles of myofibrils of the iliofibularis muscle of Xenopus laevis at 4 degrees C from which the sarcolemma was either removed mechanically or made permeable by means of a detergent. A small segment of each fiber was used for a histochemical determination of fiber type. At 5 mM MgATP, the fast fibers had a maximum shortening velocity (Vmax) of 1.74 +/- 0.12 Lo/s (mean +/- SEM) (Lo: segment length at a sarcomere length of 2.2 microns). For the slow fibers Vmax was 0.41 +/- 0.15 Lo/s. In both cases, the relationship between Vmax and the ATP concentration followed the hyperbolic Michaelis-Menten relation. A Km of 0.56 +/- 0.06 mM (mean +/- SD) was found for the fast fibers and of 0.16 +/- 0.03 mM for the slow fibers. Assuming that Vmax is mainly determined by the crossbridge detachment rate, the apparent second order dissociation rate for the actomyosin complex in vivo would be 3.8.10(5) M-1s-1 for the fast fibers and 2.9.10(5) M-1 s-1 for the slow fibers. Maximum power output as a function of the MgATP concentration was derived from the force-velocity relationships. At 5 mM MgATP, the maximum power output in fast fibers was (73 +/- 8) mW.g-1 dry weight and (15 +/- 5) mW.g-1 in slow fibers. The Km for MgATP for the maximum power output for the fast fibers was (0.15 +/- 0.03) mM, which is about a factor of 4 lower than the Km for Vmax. The implications of these results are discussed in terms of a kinetic scheme for crossbridge action.

PubMed Disclaimer

References

    1. J Gen Physiol. 1967 Jul;50(6):Suppl:197-218 - PubMed
    1. J Physiol. 1968 Aug;197(3):685-707 - PubMed
    1. Nature. 1971 Oct 22;233(5321):533-8 - PubMed
    1. J Gen Physiol. 1972 Mar;59(3):305-17 - PubMed
    1. Biochemistry. 1971 Dec 7;10(25):4617-24 - PubMed

Publication types

Substances