Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Oct;27(29):36075-36084.
doi: 10.1007/s11356-020-09728-7. Epub 2020 Jul 2.

Producing electrical energy in microbial fuel cells based on sulphate reduction: a review

Affiliations
Review

Producing electrical energy in microbial fuel cells based on sulphate reduction: a review

Isabel Cristina Braga Rodrigues et al. Environ Sci Pollut Res Int. 2020 Oct.

Abstract

Combination of the treatment of effluents with high organic loads and the production of electricity is the driving forces stimulating the development of microbial fuel cells (MFC). The increase in electricity production in MFCs requires not only the optimization of the operational parameters but also the inhibition of the metabolic pathways, which compete with electricity production, such as methanogenesis. The presence of both sulphate and sulphide ions in conventional anaerobic reactors hampers the growth of methanogenic archaea and justifies the use of sulphate and therefore sulphate-reducing bacteria (SRB) in the anodic half-cell of MFC. Most importantly, the literature on the subject reveals that SRB are able to directly transfer electrons to solid electrodes, enabling the production of electrical energy. This technology is versatile because it associates the removal of both sulphate and the chemical oxygen demand (COD) with the production of electricity. Therefore, the current work revises the main aspects related to the inoculation of MFC with SRB focusing on (i) the microbial interactions in the anodic chamber, (ii) the electron transfer pathways to the solid anode, and also (iii) the sulphate and COD removal yields along with the electricity production efficiencies.

Keywords: Anaerobic digestion; Bioelectrochemistry; Biofuel; Industrial effluents; Sulphate-reducing bacteria; Wastewater.

PubMed Disclaimer

LinkOut - more resources