A novel cold biorefinery approach for isolation of high quality fish oil in parallel with gel-forming proteins
- PMID: 32615378
- DOI: 10.1016/j.foodchem.2020.127294
A novel cold biorefinery approach for isolation of high quality fish oil in parallel with gel-forming proteins
Abstract
The pH-shift process for isolation of gel-forming proteins from fish processing by-products was extended to allow parallel isolation of fish oil. Subjecting the floating emulsion layer formed during pH-shift processing of salmon by-products to pH-adjustment or freeze/thawing efficiently released the emulsified oil at 4 °C. However, for herring by-products higher temperature (10 °C) and a combination of the emulsion-breaking techniques was required for efficient oil release. Oil recovery yield using the adjusted pH-shift process was lower than with classic heat-induced oil isolation (90 °C/20 min), but pH-shift-produced oils had higher amounts of n-3 polyunsaturated fatty acids (n-3 PUFA). Also, alkaline pH-shift processing produced oils with remarkably less oxidation products and free fatty acids compared with acid pH-shift process or heat-induced isolation. Extending the pH-shift process with emulsion breaking techniques can thus be a promising biorefinery approach for parallel cold production of high-quality fish oil and gel-forming proteins from fish by-products.
Keywords: Biorefinery; By-products; Cold pressed oil; Oil extraction; Omega-3; pH-shift method.
Copyright © 2020 Elsevier Ltd. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
- Full Text Sources
- Other Literature Sources
 
        