Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul 22;16(28):6643-6653.
doi: 10.1039/d0sm00266f.

EMI and microwave absorbing efficiency of polyaniline-functionalized reduced graphene oxide/γ-Fe2O3/epoxy nanocomposite

Affiliations

EMI and microwave absorbing efficiency of polyaniline-functionalized reduced graphene oxide/γ-Fe2O3/epoxy nanocomposite

Rimpa Jaiswal et al. Soft Matter. .

Abstract

Polyaniline-decorated reduced graphene oxide/ferrite nanofiller (RGPF) prepared by the solution mixing method in three different ratios (1 : 3, 1 : 1 and 3 : 1) of polyaniline-decorated reduced graphene oxide and ferrite have been studied for microwave absorption properties in defence application. The polyaniline-decorated reduced graphene oxide/ferrite and neat ferrite nano-fillers have been used for the preparation of an epoxy nanocomposite (RGPFE) of 60 wt%. The distribution of the RGPF nanofiller in the epoxy matrix was analyzed by field emission scanning electron microscopy. Further, thermal gravimetric analyses revealed the excellent thermal stability of the nanocomposites. A vibrating sample magnetometer was employed to find out the magnetic behavior of the prepared nanocomposites. The complex permittivity and permeability were investigated to evaluate the principal properties in the frequency range from 2 to 18 GHz. These results show that an epoxy nanocomposite with 60 wt% RGPF filler in the ratio of 3 : 1 has maximum dielectric loss. Finally, these electromagnetic data were used to calculate the reflection loss of the epoxy nanocomposites, and showed good agreement between the calculated and measured data of these nanocomposites. The minimum reflection loss was observed as -10.26 dB in the X band with a thickness of 3.0 mm, and the bandwidth was 8.47 GHz for RL ≤-10 dB. On the basis of the above observations, these nanocomposites could be a good candidate for electromagnetic interference shielding (EMI) and microwave absorption applications.

PubMed Disclaimer

LinkOut - more resources