Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul 3;24(1):391.
doi: 10.1186/s13054-020-03108-w.

Causes and characteristics of death in patients with acute hypoxemic respiratory failure and acute respiratory distress syndrome: a retrospective cohort study

Affiliations

Causes and characteristics of death in patients with acute hypoxemic respiratory failure and acute respiratory distress syndrome: a retrospective cohort study

Scott W Ketcham et al. Crit Care. .

Abstract

Background: Acute hypoxemic respiratory failure (AHRF) and acute respiratory distress syndrome (ARDS) are associated with high in-hospital mortality. However, in cohorts of ARDS patients from the 1990s, patients more commonly died from sepsis or multi-organ failure rather than refractory hypoxemia. Given increased attention to lung-protective ventilation and sepsis treatment in the past 25 years, we hypothesized that causes of death may be different among contemporary cohorts. These differences may provide clinicians with insight into targets for future therapeutic interventions.

Methods: We identified adult patients hospitalized at a single tertiary care center (2016-2017) with AHRF, defined as PaO2/FiO2 ≤ 300 while receiving invasive mechanical ventilation for > 12 h, who died during hospitalization. ARDS was adjudicated by multiple physicians using the Berlin definition. Separate abstractors blinded to ARDS status collected data on organ dysfunction and withdrawal of life support using a standardized tool. The primary cause of death was defined as the organ system that most directly contributed to death or withdrawal of life support.

Results: We identified 385 decedents with AHRF, of whom 127 (33%) had ARDS. The most common primary causes of death were sepsis (26%), pulmonary dysfunction (22%), and neurologic dysfunction (19%). Multi-organ failure was present in 70% at time of death, most commonly due to sepsis (50% of all patients), and 70% were on significant respiratory support at the time of death. Only 2% of patients had insupportable oxygenation or ventilation. Eighty-five percent died following withdrawal of life support. Patients with ARDS more often had pulmonary dysfunction as the primary cause of death (28% vs 19%; p = 0.04) and were also more likely to die while requiring significant respiratory support (82% vs 64%; p < 0.01).

Conclusions: In this contemporary cohort of patients with AHRF, the most common primary causes of death were sepsis and pulmonary dysfunction, but few patients had insupportable oxygenation or ventilation. The vast majority of deaths occurred after withdrawal of life support. ARDS patients were more likely to have pulmonary dysfunction as the primary cause of death and die while requiring significant respiratory support compared to patients without ARDS.

Keywords: Acute hypoxemic respiratory failure; Acute respiratory distress syndrome; Cause of death; Mortality.

PubMed Disclaimer

Conflict of interest statement

This material is the result of work supported with resources and use of facilities at the Ann Arbor VA Medical Center. This manuscript does not represent the views of the Department of Veterans Affairs or the US government. The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Causes of death among patients with acute hypoxemic respiratory failure. Displays the primary syndrome or organ system dysfunction responsible for death among patients with acute hypoxemic respiratory failure in all patients (N = 385) and in patients with acute respiratory distress syndrome (ARDS, N = 127) and without ARDS (N = 258). *p value < 0.01

References

    1. Vincent JL, Akça S, De Mendonça A, Haji-Michael P, Sprung C, Moreno R, et al. The epidemiology of acute respiratory failure in critically III patients. Chest. 2002;121(5):1602–1609. doi: 10.1378/chest.121.5.1602. - DOI - PubMed
    1. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800. doi: 10.1001/jama.2016.0291. - DOI - PubMed
    1. Stapleton RD, Wang BM, Hudson LD, Rubenfeld GD, Caldwell ES, Steinberg KP. Causes and timing of death in patients with ARDS. Chest. 2005;128(2):525–532. doi: 10.1378/chest.128.2.525. - DOI - PubMed
    1. Fan E, Del Sorbo L, Goligher EC, Hodgson CL, Munshi L, Walkey AJ, et al. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 2017;195(9):1253–63. - PubMed
    1. Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–1308. doi: 10.1056/NEJM200005043421801. - DOI - PubMed

Publication types