Neuro-oxysterols and neuro-sterols as ligands to nuclear receptors, GPCRs, ligand-gated ion channels and other protein receptors
- PMID: 32621622
- DOI: 10.1111/bph.15191
Neuro-oxysterols and neuro-sterols as ligands to nuclear receptors, GPCRs, ligand-gated ion channels and other protein receptors
Abstract
The brain is the most cholesterol rich organ in the body containing about 25% of the body's free cholesterol. Cholesterol cannot pass the blood-brain barrier and be imported or exported; instead, it is synthesised in situ and metabolised to oxysterols, oxidised forms of cholesterol, which can pass the blood-brain barrier. 24S-Hydroxycholesterol is the dominant oxysterol in the brain after parturition, but during development, a myriad of other oxysterols are produced, which persist as minor oxysterols after birth. During both development and in later life, sterols and oxysterols interact with a variety of different receptors, including nuclear receptors, membrane bound GPCRs, the oxysterol/sterol sensing proteins INSIG and SCAP, and the ligand-gated ion channel NMDA receptors found in nerve cells. In this review, we summarise the different oxysterols and sterols found in the CNS whose biological activity is transmitted via these different classes of protein receptors. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Keywords: 24S,25-epoxycholesterol; 24S-hydroxycholesterol; G protein-coupled receptor; brain; cholesterol; nuclear receptor; oxysterol.
© 2020 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.
Similar articles
-
Oxysterols: From physiological tuners to pharmacological opportunities.Br J Pharmacol. 2021 Aug;178(16):3089-3103. doi: 10.1111/bph.15073. Epub 2020 May 17. Br J Pharmacol. 2021. PMID: 32335907 Review.
-
Oxysterols and retinal degeneration.Br J Pharmacol. 2021 Aug;178(16):3205-3219. doi: 10.1111/bph.15391. Epub 2021 Feb 27. Br J Pharmacol. 2021. PMID: 33501641 Review.
-
Cholesterol and oxysterol sulfates: Pathophysiological roles and analytical challenges.Br J Pharmacol. 2021 Aug;178(16):3327-3341. doi: 10.1111/bph.15227. Epub 2020 Sep 6. Br J Pharmacol. 2021. PMID: 32762060 Review.
-
A second class of nuclear receptors for oxysterols: Regulation of RORalpha and RORgamma activity by 24S-hydroxycholesterol (cerebrosterol).Biochim Biophys Acta. 2010 Aug;1801(8):917-23. doi: 10.1016/j.bbalip.2010.02.012. Epub 2010 Mar 6. Biochim Biophys Acta. 2010. PMID: 20211758 Free PMC article.
-
Oxiapoptophagy: A type of cell death induced by some oxysterols.Br J Pharmacol. 2021 Aug;178(16):3115-3123. doi: 10.1111/bph.15173. Epub 2020 Jul 23. Br J Pharmacol. 2021. PMID: 32579703 Review.
Cited by
-
Mass Spectrometry Imaging of Cholesterol and Oxysterols.Adv Exp Med Biol. 2024;1440:73-87. doi: 10.1007/978-3-031-43883-7_5. Adv Exp Med Biol. 2024. PMID: 38036876
-
Targeting cytochrome P450 46A1 and brain cholesterol 24-hydroxylation to treat neurodegenerative diseases.Explor Neuroprotective Ther. 2021 Dec 30;1(3):159-172. doi: 10.37349/ent.2021.00013. Explor Neuroprotective Ther. 2021. PMID: 35156102 Free PMC article.
-
Bioactive Compounds for Customized Brain Health: What Are We and Where Should We Be Heading?Int J Environ Res Public Health. 2023 Aug 3;20(15):6518. doi: 10.3390/ijerph20156518. Int J Environ Res Public Health. 2023. PMID: 37569058 Free PMC article. Review.
-
Probabilistic Risk Assessment of Dietary Exposure to Chloramphenicol in Guangzhou, China.Int J Environ Res Public Health. 2021 Aug 20;18(16):8805. doi: 10.3390/ijerph18168805. Int J Environ Res Public Health. 2021. PMID: 34444558 Free PMC article.
-
Isoform- and cell-state-specific APOE homeostasis and function.Neural Regen Res. 2024 Nov 1;19(11):2456-2466. doi: 10.4103/NRR.NRR-D-23-01470. Epub 2024 Jan 31. Neural Regen Res. 2024. PMID: 38526282 Free PMC article.
References
REFERENCES
-
- Abdel-Khalik, J., Crick, P. J., Yutuc, E., DeBarber, A. E., Duell, P. B., Steiner, R. D., … Griffiths, W. J. (2018). Identification of 7α,24-dihydroxy-3-oxocholest-4-en-26-oic and 7α,25-dihydroxy-3-oxocholest-4-en-26-oic acids in human cerebrospinal fluid and plasma. Biochimie, 153, 86-98. https://doi.org/10.1016/j.biochi.2018.06.020
-
- Axelson, M., Larsson, O., Zhang, J., Shoda, J., & Sjovall, J. (1995). Structural specificity in the suppression of HMG-CoA reductase in human fibroblasts by intermediates in bile acid biosynthesis. Journal of Lipid Research, 36, 290-298.
-
- Alexander, S. P. H., Christopoulos, A., Davenport, A. P., Kelly, E., Mathie, A., Peters, J. A., & CGTP Collaborators (2019). The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. British Journal of Pharmacology, 176(S1), S21-S141.
-
- Alexander, S. P. H., Mathie, A, Peters, J. A., Veale, E. L., Striessnig, J., Kelly, E., & CGTP Collaborators. (2019). The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology, 176(S1), S142-228.
-
- Bauman, D. R., Bitmansour, A. D., McDonald, J. G., Thompson, B. M., Liang, G., & Russell, D. W. (2009). 25-Hydroxycholesterol secreted by macrophages in response to toll-like receptor activation suppresses immunoglobulin A production. Proceedings of the National Academy of Sciences of the United States of America, 106, 16764-16769.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources