Human Mpv17-like protein with a mitigating effect on mtDNA damage is involved in cAMP/PKA signaling in the mitochondrial matrix
- PMID: 32621840
- DOI: 10.1016/j.bbamcr.2020.118792
Human Mpv17-like protein with a mitigating effect on mtDNA damage is involved in cAMP/PKA signaling in the mitochondrial matrix
Abstract
Human Mpv17-like protein (M-LPH/Mpv17L) is thought to play a role in minimizing mitochondrial dysfunction caused by mitochondrial DNA (mtDNA) damage. We have recently demonstrated that, in addition to an increase of mtDNA damage, M-LPH-knockout (M-LPH-KO) in HepG2 cells causes a significant reduction of mitochondrial transcription factor A (TFAM) protein, an essential factor for mtDNA maintenance, along with an increase in its phosphorylation. These intracellular changes suggested an association of M-LPH with the cAMP/PKA signaling pathway, as selective degradation of TFAM by mitochondrial protease is driven by protein kinase A (PKA)-dependent phosphorylation. In the present study, we observed that M-LPH-KO in HepG2 cells caused an increase in the level of mitochondrial cAMP and a reduction of total cellular cyclic nucleotide phosphodiesterase (PDE) activity. In vitro-synthesized M-LPH showed PDE activity, which was inhibited by IBMX, a non-selective inhibitor of PDE. Furthermore, M-LPH-KO promoted PKA-dependent phosphorylation of some mitochondrial proteins. Taken together, the present findings suggest that M-LPH, which has structural features atypical of PDE family members, might be a novel human PDE involved in cAMP/PKA signaling in the mitochondrial matrix.
Keywords: Cyclic nucleotide phosphodiesterase; Mitochondrial matrix; Mpv17-like protein; cAMP/PKA signaling.
Copyright © 2020 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials
