3D printing: Principles and pharmaceutical applications of selective laser sintering
- PMID: 32622811
- DOI: 10.1016/j.ijpharm.2020.119594
3D printing: Principles and pharmaceutical applications of selective laser sintering
Abstract
Pharmaceutical three-dimensional (3D) printing is a modern fabrication process with the potential to create bespoke drug products of virtually any shape and size from a computer-aided design model. Selective laser sintering (SLS) 3D printing combines the benefits of high printing precision and capability, enabling the manufacture of medicines with unique engineering and functional properties. This article reviews the current state-of-the-art in SLS 3D printing, including the main principles underpinning this technology, and highlights the diverse selection of materials and essential parameters that influence printing. The technical challenges and processing conditions are also considered in the context of their effects on the printed product. Finally, the pharmaceutical applications of SLS 3D printing are covered, providing an emphasis on the advantages the technology offers to drug product manufacturing and personalised medicine.
Keywords: 3D printed drug products; Additive manufacturing; Digital health; Gastrointestinal drug delivery systems; Personalized medicines; Powder bed fusion; Printlets.
Copyright © 2020 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
