Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun 26;111(3):184-194.
doi: 10.23749/mdl.v111i3.9767.

COVID-19 infection and diffusion among the healthcare workforce in a large university-hospital in northwest Italy

Affiliations

COVID-19 infection and diffusion among the healthcare workforce in a large university-hospital in northwest Italy

Giacomo Garzaro et al. Med Lav. .

Abstract

Backgroud: Since the beginning of the coronavirus disease 2019 (COVID-19) outbreak, healthcare workers (HCWs) have been the workers most likely to contract the disease. Intensive focus is therefore needed on hospital strategies that minimize exposure and diffusion, confer protection and facilitate early detection and isolation of infected personnel.

Methods: To evaluate the early impact of a structured risk-management for exposed COVID-19 HCWs and describe how their characteristics contributed to infection and diffusion. Socio-demographic and clinical data, aspects of the event-exposure (date, place, length and distance of exposure, use of PPE) and details of the contact person were collected.

Results: The 2411 HCWs reported 2924 COVID-19 contacts. Among 830 HCWs who were at 'high or medium risk', 80 tested positive (9.6%). Physicians (OR=2.03), and non-medical services -resulted in an increased risk (OR=4.23). Patient care did not increase the risk but sharing the work environment did (OR=2.63). There was a significant time reduction between exposure and warning, exposure and test, and warning and test since protocol implementation. HCWs with management postitions were the main source of infection due to the high number of interactions.

Discussion: A proactive system that includes prompt detection of contagious staff and identification of sources of exposure helps to lower the intra-hospital spread of infection. A speedier return to work of staff who would otherwise have had to self-isolate as a precautionary measure improves staff morale and patient care by reducing the stress imposed by excessive workloads arising from staff shortages.

«Come l’infezione da COVID-19 si è diffusa tra i lavoratori di un grande ospedale universitario nel nord-ovest Italia»

Introduzione:: Fin dall’inizio dell’epidemia di Coronavirus-2019 (COVID-19), gli operatori sanitari (HCW) sono stati i lavoratori che hanno avuto maggiori probabilità di contrarre la malattia. È pertanto necessario un focus sulle strategie ospedaliere per ridurre al minimo l’esposizione e la diffusione dell’infezione, e che possano facilitare l’individuazione precoce e l’isolamento del personale infetto.

Metodi:: Valutare l’impatto iniziale di una gestione strutturata del rischio per gli HCW esposti a COVID-19 e descrivere come le loro caratteristiche hanno contribuito all’infezione e alla sua diffusione. Sono stati raccolti dati socio-demografici e clinici, aspetti dell’esposizione (data, luogo, lunghezza e distanza dell’esposizione, uso dei DPI) e dettagli della persona fonte.

Risultati:: 2411 operatori sanitari hanno riportato 2924 contatti COVID-19. Tra gli 830 operatori sanitari a rischio alto o medio, 80 sono risultati positivi (9,6%). I medici (OR = 2,03) e i servizi non medici hanno comportato un aumento del rischio (OR=4,23). L’assistenza ai pazienti non ha aumentato il rischio, ma una condivisione dell’ambiente di lavoro (OR=2,63). Vi è stata una significativa riduzione del tempo tra esposizione e segnalazione, esposizione e test e segnalazione e test dall’implementazione del protocollo. Gli operatori sanitari con ruolo di coordinamento è stata la principale fonte di infezione a causa dell’elevato numero di interazioni all’inizio dell’epidemia.

Discussione:: Un sistema proattivo che includa la rilevazione tempestiva del personale contagioso e l’identificazione delle fonti di esposizione aiuta a ridurre la diffusione dell’infezione all’interno dell’ospedale. Un rapido ritorno al lavoro dei lavoratori, che altrimenti avrebbero dovuto autoisolarsi come misura precauzionale, migliora la cura dei pazienti riducendo lo stress imposto da carichi di lavoro eccessivi derivanti dalla carenza di personale.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Risk of infection among healthcare workers role, hospital services, type of hospital and exposure. Figure 1 shows the risks of COVID-19 infection according to hospital service (A), healthcare workers role (B), type of hospital (C), and type of exposure (D). Squares represent the observed proportions, and the lines extending from the squares are the 95% confidence intervals for these proportions. The confidence intervals that are reported as numbers to the right of the plot are 95% confidence intervals for the difference of proportions from the reference category. Reference categories are identified by the absence of 95% confidence intervals.
Figure 2
Figure 2
Trend of exposure, warning, and COVID-19 testing since the protocol implementation on 06 March 2020: time elapsed (days) between exposure to COVID-19 and warning to the occupational health service (2A); days between exposure and testing for COVID-19 (2B); days between warning to the occupational health service and testing for COVID-19 (2C). R2 indicates the variance explained by the regression model. P-value is for linear trend across days.
Figure 3
Figure 3
Social network analysis of COVID-19 positive healthcare workers and sources of infection. Main sources of infection linked to healthcare workers. Healthcare workers had frequent interaction with each other with few interactions with patients. Each circle represents a source of infection with a color assigned to its role within the hospital. Every line represents an interaction. The bigger the circle the higher the frequency of interaction representing its degree of centrality.

References

    1. Adams JG, Walls RM. Supporting the health care workforce during the COVID-19 global epidemic. JAMA. (Published online March 12, 2020) doi:10.1001/jama.2020.3972. - PubMed
    1. Bastian M, Heymann S, Jacomy M. (2009). Gephi: an open source software for exploring and manipulating networks. Available on line at: https://gephi.org/publications/gephi-bastian-feb09.pdf. (last accessed 09-04-2020)
    1. Blondel VD, Guillaume JL, Lambiotte R. Lefebvre: Fast unfolding of communities in large networks. J Stat Mech. 2008;10:P10008.
    1. Buckrell S, Coleman BL, McNeil SA, et al. Sources of viral respiratory infections in Canadian acute care hospital healthcare personnel. (Published online January 16, 2020) J Hosp Infect. doi:10.1016/j.jhin.2020.01.009. - PMC - PubMed
    1. CDC, Centers for Disease Control and Prevention. (2020). Interim guidelines for collecting, handling, and testing clinical specimens from persons for coronavirus disease 2019 (COVID-19) Available on line at: https://www.cdc.gov/coronavirus/2019-ncov/lab/guidelines-clinical-specim.... (last accessed 09-04-2020)