Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation
- PMID: 32624871
- PMCID: PMC6999254
- DOI: 10.1002/elsc.201800039
Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation
Abstract
This review aims to present current knowledge of the fungi involved in lignocellulose degradation with an overview of the various classes of lignocellulose-acting enzymes engaged in the pretreatment and saccharification step. Fungi have numerous applications and biotechnological potential for various industries including chemicals, fuel, pulp, and paper. The capability of fungi to degrade lignocellulose containing raw materials is due to their highly effective enzymatic system. Along with the hydrolytic enzymes consisting of cellulases and hemicellulases, responsible for polysaccharide degradation, they have a unique nonenzymatic oxidative system which together with ligninolytic enzymes is responsible for lignin modification and degradation. An overview of the enzymes classification is given by the Carbohydrate-Active enZymes (CAZy) database as the major database for the identification of the lignocellulolytic enzymes by their amino acid sequence similarity. Finally, the recently discovered novel class of recalcitrant polysaccharide degraders-lytic polysaccharide monooxygenases (LPMOs) are presented, because of these enzymes importance in the cellulose degradation process.
Keywords: Biological pretreatment; Carbohydrate active enzymes; Fungi and fungal enzymes; Lignocellulose degradation; Plant cell wall.
© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
Figures
Similar articles
-
Deletion of AA9 Lytic Polysaccharide Monooxygenases Impacts A. nidulans Secretome and Growth on Lignocellulose.Microbiol Spectr. 2022 Jun 29;10(3):e0212521. doi: 10.1128/spectrum.02125-21. Epub 2022 Jun 6. Microbiol Spectr. 2022. PMID: 35658600 Free PMC article.
-
Quantifying Oxidation of Cellulose-Associated Glucuronoxylan by Two Lytic Polysaccharide Monooxygenases from Neurospora crassa.Appl Environ Microbiol. 2021 Nov 24;87(24):e0165221. doi: 10.1128/AEM.01652-21. Epub 2021 Oct 6. Appl Environ Microbiol. 2021. PMID: 34613755 Free PMC article.
-
Lytic polysaccharide monooxygenases promote oxidative cleavage of lignin and lignin-carbohydrate complexes during fungal degradation of lignocellulose.Environ Microbiol. 2021 Aug;23(8):4547-4560. doi: 10.1111/1462-2920.15648. Epub 2021 Jun 24. Environ Microbiol. 2021. PMID: 34169632
-
Functional characterization of cellulose-degrading AA9 lytic polysaccharide monooxygenases and their potential exploitation.Appl Microbiol Biotechnol. 2020 Apr;104(8):3229-3243. doi: 10.1007/s00253-020-10467-5. Epub 2020 Feb 19. Appl Microbiol Biotechnol. 2020. PMID: 32076777 Review.
-
Fungal secretomics to probe the biological functions of lytic polysaccharide monooxygenases.Carbohydr Res. 2017 Aug 7;448:155-160. doi: 10.1016/j.carres.2017.05.010. Epub 2017 May 17. Carbohydr Res. 2017. PMID: 28535872 Review.
Cited by
-
The Effect of Pollen on Coral Health.Biology (Basel). 2023 Nov 27;12(12):1469. doi: 10.3390/biology12121469. Biology (Basel). 2023. PMID: 38132295 Free PMC article. Review.
-
Independent metabolism of oligosaccharides is the keystone of synchronous utilization of cellulose and hemicellulose in Myceliophthora.PNAS Nexus. 2024 Feb 6;3(2):pgae053. doi: 10.1093/pnasnexus/pgae053. eCollection 2024 Feb. PNAS Nexus. 2024. PMID: 38380057 Free PMC article.
-
Multi-omics analysis provides insights into lignocellulosic biomass degradation by Laetiporus sulphureus ATCC 52600.Biotechnol Biofuels. 2021 Apr 17;14(1):96. doi: 10.1186/s13068-021-01945-7. Biotechnol Biofuels. 2021. PMID: 33865436 Free PMC article.
-
Screening of Lignocellulolytic Enzyme Activities in Fungal Species and Sequential Solid-State and Submerged Cultivation for the Production of Enzyme Cocktails.Polymers (Basel). 2021 Oct 28;13(21):3736. doi: 10.3390/polym13213736. Polymers (Basel). 2021. PMID: 34771293 Free PMC article.
-
Unveiling lignocellulolytic trait of a goat omasum inhabitant Klebsiella variicola strain HSTU-AAM51 in light of biochemical and genome analyses.Braz J Microbiol. 2022 Mar;53(1):99-130. doi: 10.1007/s42770-021-00660-7. Epub 2022 Jan 28. Braz J Microbiol. 2022. PMID: 35088248 Free PMC article.
References
-
- Schirmaier, C. , Jossen, V. , Kaiser, S. C. , Jüngerkes, F. et al., Scale‐up of adipose tissue‐derived mesenchymal stem cell production in stirred single‐use bioreactors under low‐serum conditions. Eng. Life Sci. 2014, 14, 292–303.
-
- Cocinero, E. J. , Gamblin, D. P. , Davis, B. G. , Simons, J. P. , The building blocks of cellulose: the intrinsic conformational structures of cellobiose, its epimer, lactose, and their singly hydrated complexes. J. Am. Chem. Soc. 2009, 131, 11117–11123. - PubMed
-
- Sánches, C. , Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol. Adv. 2009, 27, 185–194. - PubMed
-
- Chen, H. , Chemical composition and structure of natural lignocellulose, in: Chen H. (Ed.), Biotechnology of Lignocellulose: Theory and Practice, Springer Science, Netherlands: 2014, pp. 25–71.
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources