Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Oct 21;242(4877):426-30.
doi: 10.1126/science.3262925.

Kaposi's sarcoma cells: long-term culture with growth factor from retrovirus-infected CD4+ T cells

Affiliations

Kaposi's sarcoma cells: long-term culture with growth factor from retrovirus-infected CD4+ T cells

S Nakamura et al. Science. .

Abstract

Studies of the biology and pathogenesis of Kaposi's sarcoma (KS) have been hampered by the inability to maintain long-term cultures of KS cells in vitro. In this study AIDS-KS-derived cells with characteristic spindle-like morphology were cultured with a growth factor (or factors) released by CD4+ T lymphocytes infected with human T-lymphotropic virus type I or II (HTLV-I or HTLV-II) or with human immunodeficiency virus type 1 or 2 (HIV-1 or HIV-2). Medium conditioned by HTLV-II-infected, transformed lines of T cells (HTLV-II CM) contained large amounts of this growth activity and also supported the temporary growth of normal vascular endothelial cells, but not fibroblasts. Interleukin-1 and tumor necrosis factor-alpha stimulated the growth of the KS-derived cells, but the growth was only transient and these could be distinguished from that in HTLV-II CM. Other known endothelial cell growth promoting factors, such as acidic and basic fibroblast growth factors and epidermal growth factor, did not support the long-term growth of the AIDS-KS cells. The factor released by CD4+ T cells infected with human retroviruses should prove useful in studies of the pathogenesis of KS.

PubMed Disclaimer

Publication types

MeSH terms

Substances