Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Multicenter Study
. 2020 Jul 6;46(1):92.
doi: 10.1186/s13052-020-00860-1.

Targeted re-sequencing for early diagnosis of genetic causes of childhood epilepsy: the Italian experience from the 'beyond epilepsy' project

Affiliations
Multicenter Study

Targeted re-sequencing for early diagnosis of genetic causes of childhood epilepsy: the Italian experience from the 'beyond epilepsy' project

Elisabetta Amadori et al. Ital J Pediatr. .

Abstract

Background: Childhood epilepsies are a heterogeneous group of conditions differing in diagnostic criteria, management, and outcome. Late-infantile neuronal ceroid lipofuscinosis type 2 (CLN2) is a neurodegenerative condition caused by biallelic TPP1 variants. This disorder presents with subtle and relatively non-specific symptoms, mimicking those observed in more common paediatric epilepsies and followed by rapid psychomotor deterioration and drug-resistant epilepsy. A prompt diagnosis is essential to adopt appropriate treatment and disease management strategies.

Methods: This is a prospective, multicentre study on the efficiency of targeted re-sequencing in the early identification of the genetic causes of childhood epilepsy, with particular regard to CLN2. After phenotypic characterization, a 283-gene Next Generation Sequencing panel was performed in 21 Italian children with neurodevelopmental abnormalities, aged between 24 and 60 months, experiencing first unprovoked seizure after 2 years of age.

Results: The average age at enrolment was 39.9 months, with a mean age at seizure onset of 30.9 months and a mean time interval between seizure onset and targeted resequencing of 9 months. Genetic confirmation was achieved in 4 out of 21 patients, with a diagnostic yield of 19%. In one case, the homozygous splice acceptor variant c.509-1G > C in TPP1 was identified, leading to a CLN2 diagnosis. Three pathogenic variants in MECP2 were also detected in three patients, including the frameshift variant c.1157_1186delinsA (p.Leu386Hisfs*9) in a girl with negative single gene sequencing. Variants of unknown significance (VUS) were found in 11 out of 21 (52.4%) individuals, whereas no clinically significant variants were observed in the remaining 6 subjects.

Conclusions: Our findings support the efficacy of target re-sequencing in the identification of the genetic causes of childhood epilepsy and suggest that this technique might prove successful in the early detection of CLN2 as well as other neurodevelopmental conditions.

Keywords: CLN2; Early diagnosis; Epilepsy; Next generation sequencing (NGS); TPP1; Targeted re-sequencing.

PubMed Disclaimer

Conflict of interest statement

P.S. has received speaker fees and participated at advisory boards for BioMarin, Zogenyx, GW Pharmaceuticals, and has received research funding by ENECTA BV, GW Pharmaceuticals, Kolfarma srl., Eisai. The other authors declare no conflict of interest.

Figures

Fig. 1
Fig. 1
Phenotypic features of this cohort. a Seizure types recorded in our cohort. b Distribution of the most relevant associated clinical features
Fig. 2
Fig. 2
Brain magnetic resonance imaging (MRI) of patient #21. a Axial T2-weighted image showing mild hyperintensity in the periventricular deep white matter (thin arrow). b Axial fluid attenuated inversion recovery (FLAIR) scan demonstrating hyperintensity in the periventricular white matter, especially in the posterior regions (thin arrow), with preserved myelination in the subcortical white matter (thick arrow). c Coronal T2-weighted scan demonstrating mild hyperintensity in the posterior periventricular white matter (thin arrow) and moderate cerebellar atrophy (thick arrow). d Sagittal T1-weighted scan showing moderate cerebellar atrophy (thick arrow) with enlarged IV ventricle (star) and cisterna magna (thin arrow). The time from the first seizure to MRI was one month

References

    1. Orsini A, Zara F, Striano P. Recent advances in epilepsy genetics. Neurosci Lett. 2018;667:4–9. doi: 10.1016/j.neulet.2017.05.014. - DOI - PubMed
    1. Hildebrand MS, Dahl HH, Damiano JA, Smith RJ, Scheffer IE, Berkovic SF. Recent advances in the molecular genetics of epilepsy. J Med Genet. 2013;50(5):271–279. doi: 10.1136/jmedgenet-2012-101448. - DOI - PubMed
    1. Striano P, Vari MS, Mazzocchetti C, Verrotti A, Zara F. Management of genetic epilepsies: from empirical treatment to precision medicine. Pharmacol Res. 2016;107:426–429. doi: 10.1016/j.phrs.2016.04.006. - DOI - PubMed
    1. Scala M, Bianchi A, Bisulli F, Coppola A, Elia M, Trivisano M, et al. Advances in genetic testing and optimization of clinical management in children and adults with epilepsy. Expert Rev Neurother. 2020;20(3):251–269. doi: 10.1080/14737175.2020.1713101. - DOI - PubMed
    1. Williams RE, Adams HR, Blohm M, Cohen-Pfeffer JL, de Los RE, Denecke J, et al. Management strategies for CLN2 disease. Pediatr Neurol. 2017;69:102–112. doi: 10.1016/j.pediatrneurol.2017.01.034. - DOI - PubMed

Publication types

Supplementary concepts