Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul;4(7):743-753.
doi: 10.1038/s41551-020-0583-0. Epub 2020 Jul 6.

Methotrexate-loaded tumour-cell-derived microvesicles can relieve biliary obstruction in patients with extrahepatic cholangiocarcinoma

Affiliations

Methotrexate-loaded tumour-cell-derived microvesicles can relieve biliary obstruction in patients with extrahepatic cholangiocarcinoma

Yunfeng Gao et al. Nat Biomed Eng. 2020 Jul.

Abstract

Most patients with cholangiocarcinoma (CCA) develop extrahepatic malignant biliary obstructions, which require palliative drainage to normalize bilirubin levels and to improve the patients' overall survival. Here, we report that the infusion of methotrexate-containing plasma-membrane microvesicles derived from apoptotic human tumour cells into the bile-duct lumen of patients with extrahepatic CCA mobilized and activated neutrophils and relieved biliary obstruction in 25% of the patients. Neutrophil recruitment by the microvesicles was associated with an increase in uridine diphosphate glucose and complement C5, and led to the degradation of the stromal barrier of CCA. The microvesicles induced pyroptosis of CCA cells through a gasdermin E-dependent pathway, and their intracellular contents released upon CCA-cell death activated patient-derived macrophages into producing proinflammatory cytokines, which attracted a secondary wave of neutrophils to the tumour site. Our findings suggest a possible treatment for the alleviation of obstructive extrahepatic CCA with few adverse effects, and highlight the potential of tumour-cell-derived microvesicles as drug carriers for antitumour therapies.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Razumilava, N. & Gores, G. J. Cholangiocarcinoma. Lancet 383, 2168–2179 (2014). - PubMed - PMC
    1. Doherty, B., Nambudiri, V. E. & Palmer, W. C. Update on the diagnosis and treatment of cholangiocarcinoma. Curr. Gastroenterol. Rep. 19, 2 (2017). - PubMed
    1. Wakai, T. et al. Surgical management of carcinoma in situ at ductal resection margins in patients with extrahepatic cholangiocarcinoma. Ann. Gastroenterol. Surg. 2, 359–366 (2018). - PubMed - PMC
    1. Ortner, M.-A. & Dorta, G. Technology insight: photodynamic therapy for cholangiocarcinoma. Nat. Rev. Gastroenterol. Hepatol. 3, 459–467 (2006).
    1. Blechacz, B., Komuta, M., Roskams, T. & Gores, G. J. Clinical diagnosis and staging of cholangiocarcinoma. Nat Rev. Gastroenterol. Hepatol. 8, 512–522 (2011). - PubMed - PMC

Publication types

MeSH terms

LinkOut - more resources