Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug 21:442:151-167.
doi: 10.1016/j.neuroscience.2020.06.042. Epub 2020 Jul 4.

Development of Action Potential Waveform in Hippocampal CA1 Pyramidal Neurons

Affiliations

Development of Action Potential Waveform in Hippocampal CA1 Pyramidal Neurons

Alberto Sánchez-Aguilera et al. Neuroscience. .

Abstract

CA1 pyramidal neurons undergo intense morphological and electrophysiological changes from the second to third postnatal weeks in rats throughout a critical period associated with the emergence of exploratory behavior. Using whole cell current-clamp recordings in vitro and neurochemical methods, we studied the development of the somatic action potential (AP) waveform and some of the underlying channels in this critical period. At the third postnatal week, APs showed a more hyperpolarized threshold, higher duration and amplitude. Subthreshold depolarization broadened APs and depolarized their peak overshoots more pronouncedly in immature neurons (2 weeks old). These features were mimicked by pharmacologically blocking the fast-inactivating A-type potassium current (IA) and matched well with the higher concentrations of Kv4.2 and Kv4.3 and the lower concentrations of BK and Kv1.2 channels detected by Western blotting. Repetitive stimulation with high frequency trains (50 Hz) reproduced AP broadening associated to inactivation of the A-type current in immature cells. Moreover, repetitive firing showed changes in AP amplitude consistent with the inactivation of both sodium and potassium subthreshold currents, which resulted in higher AP amplitudes in the more immature neurons. We propose that maturation of AP waveform and excitability in this critical developmental period could be related to the onset of exploratory behaviors.

Keywords: CA1 pyramidal neurons; action potential; development; neuronal excitability; potassium channels; sodium channels.

PubMed Disclaimer

Publication types

LinkOut - more resources