Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul;583(7815):242-248.
doi: 10.1038/s41586-020-2448-9. Epub 2020 Jul 8.

Potential for large-scale CO2 removal via enhanced rock weathering with croplands

Affiliations
Free article

Potential for large-scale CO2 removal via enhanced rock weathering with croplands

David J Beerling et al. Nature. 2020 Jul.
Free article

Abstract

Enhanced silicate rock weathering (ERW), deployable with croplands, has potential use for atmospheric carbon dioxide (CO2) removal (CDR), which is now necessary to mitigate anthropogenic climate change1. ERW also has possible co-benefits for improved food and soil security, and reduced ocean acidification2-4. Here we use an integrated performance modelling approach to make an initial techno-economic assessment for 2050, quantifying how CDR potential and costs vary among nations in relation to business-as-usual energy policies and policies consistent with limiting future warming to 2 degrees Celsius5. China, India, the USA and Brazil have great potential to help achieve average global CDR goals of 0.5 to 2 gigatonnes of carbon dioxide (CO2) per year with extraction costs of approximately US$80-180 per tonne of CO2. These goals and costs are robust, regardless of future energy policies. Deployment within existing croplands offers opportunities to align agriculture and climate policy. However, success will depend upon overcoming political and social inertia to develop regulatory and incentive frameworks. We discuss the challenges and opportunities of ERW deployment, including the potential for excess industrial silicate materials (basalt mine overburden, concrete, and iron and steel slag) to obviate the need for new mining, as well as uncertainties in soil weathering rates and land-ocean transfer of weathered products.

PubMed Disclaimer

Comment in

References

    1. Intergovernmental Panel on Climate Change (IPCC). Global Warming Of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways (World Meteorological Organization, 2018).
    1. Kantola, I. B. et al. Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering. Biol. Lett. 13, 20160714 (2017). - PubMed - PMC
    1. Zhang, G., Kang, J., Wang, T. & Zhu, C. Review and outlook for agromineral research in agriculture and climate change mitigation. Soil Res. 56, 113–122 (2018).
    1. Beerling, D. J. et al. Farming with crops and rocks to address global climate, food and soil security. Nat. Plants 4, 138–147 (2018). - PubMed
    1. Mercure, J.-F. et al. Macroeconomic impact of stranded fossil fuel assests. Nat. Clim. Chang. 8, 588–593 (2018).

Publication types

MeSH terms