Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Sep 6;27(18):6947-53.
doi: 10.1021/bi00418a041.

The Ff gene 5 protein-d(pA)40-60 complex: 1H NMR supports a localized base-binding model

Affiliations

The Ff gene 5 protein-d(pA)40-60 complex: 1H NMR supports a localized base-binding model

G C King et al. Biochemistry. .

Abstract

The interaction between Ff gene 5 protein (G5P) and d(pA)40-60 serves as an improved model system for a 1H NMR examination of the G5P-ssDNA interface under cooperative binding conditions. Selective deuteriation of aromatic residues enables individual Tyr (3,5)H and (2,6)H resonances to be monitored in spectra of high molecular weight nucleoprotein assemblies. Analysis of complexation-induced chemical shift changes and intermolecular NOEs indicates that Tyr 26 is the only tyrosine to interact directly with ssDNA. Tyr 41, which is immobilized upon binding, is implicated in a dimer-dimer contact role. These and other NMR data are consistent with a previously outlined model of the protein-DNA interface in which Phe 73', Leu 28, and Tyr 26 form components of a base-binding pocket or "dynamic clamp" fringed by a cluster of positively charged residues [King, G. C., & Coleman, J. E. (1987) Biochemistry 26, 2929-2937]. In the present version of this model, the Phe and Leu side chains are proposed to stack on either side of a single base, while there is the possibility that Tyr 26 may H-bond to the sugar-phosphate backbone in addition to or instead of stacking. Chemical-exchange effects underscore the dynamic nature of binding at the pocket. A comparison of d(pA)40-60 and oligo(dA)-induced chemical shift changes suggests that poly- and oligonucleotide complexes have indistinguishable base-binding loci but appear to differ in their dimer-dimer interactions.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Publication types