Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Nov 15:163:854-864.
doi: 10.1016/j.ijbiomac.2020.07.023. Epub 2020 Jul 6.

Development of chia seed (Salvia hispanica) mucilage films plasticized with polyol mixtures: Mechanical and barrier properties

Affiliations

Development of chia seed (Salvia hispanica) mucilage films plasticized with polyol mixtures: Mechanical and barrier properties

Uriel Urbizo-Reyes et al. Int J Biol Macromol. .

Abstract

Food packaging is one of the main contributors to the high rates of environmental contamination; therefore, interest has emerged on the use of biopolymers as alternative materials to replace conventional food packaging. Chia seed (Salvia hispanica) is recognized by having a high content of a polysaccharide called mucilage. The aim of this study was to evaluate the feasibility using of chia seed mucilage (CSM) and a polyol mixture containing glycerol and sorbitol for the development of films. CSM films with higher sorbitol content showed superior tensile strength (3.23 N/mm2) and lower water vapor permeability (1.3*10-9 g/m*s*Pa), but had poor flexibility compared to other treatments. Conversely, high glycerol content showed high elongation at break (67.55%) and solubility (22.75%), but poor water vapor permeability and tensile strength. Film formulations were optimized implementing a factorial design according to response surface methodology. Raman spectra analysis showed shifts from 854 to 872 cm-1 and 1061 to 1076 cm-1, β (CCO) modes, indicating an increase in hydrogen bonding, responsible for the high tensile strength and decreased water vapor permeability observed in this study. The optimum conditions of polyol concentration were 1.3 g of glycerol and 2.0 g of sorbitol per g of CSM. Based on these results, chia seed mucilage can successfully be used to develop biofilms with potential to be used in drug delivery and edible food coating applications.

Keywords: Biofilms; Chia seed mucilage; Optimization; Polyols.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest All authors declare no conflict of interest.

LinkOut - more resources