Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Nov:259:127503.
doi: 10.1016/j.chemosphere.2020.127503. Epub 2020 Jun 30.

Adsorption and catalytic oxidation of arsenite on Fe-Mn nodules in the presence of oxygen

Affiliations

Adsorption and catalytic oxidation of arsenite on Fe-Mn nodules in the presence of oxygen

Omar Rady et al. Chemosphere. 2020 Nov.

Abstract

Fe-Mn nodules affect the speciation, transformation and migration of arsenic (As) via redox and adsorption reactions. However, few studies have been concerned with their interaction in the presence of dissolved oxygen. In this work, the interaction mechanism of As(III) and Fe-Mn nodules was studied in different atmospheres. The influence of pH, dissolved oxygen concentration and chemical composition of nodules on the reaction was also investigated. The results indicated that manganese oxides and iron oxides in nodules respectively contribute to As(III) oxidation and As(III,V) adsorption. Under oxic conditions, Fe-Mn nodules acted as a catalyst to accelerate the oxidation of Mn(II) to Mn(III,V) oxides, which significantly enhanced As(III) oxidation. In the system containing 10 mg L-1 As(III) and 1.0 g L-1 Fe-Mn nodules, the maximum oxidation capacity of As(III) reached 3.22, 3.48 and 3.71 mg g-1, and the corresponding As(III,V) adsorption capacity reached 2.49, 2.40, and 2.39 mg g-1 in nitrogen, air and oxygen atmosphere, respectively. The oxidation capacity of As(III) increased and decreased with increasing dissolved oxygen concentration and pH, respectively. This work clarifies the mechanism of As(III) oxidation by soil Fe-Mn nodules in various systems and contributes to a better understanding of the behaviors and fate of As in environments.

Keywords: Adsorption; Arsenic; Catalytic oxidation; Fe-Mn nodules; Redox.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources