Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul 9;8(1):104.
doi: 10.1186/s40478-020-00974-x.

The pediatric supratentorial MYCN-amplified high-grade gliomas methylation class presents the same radiological, histopathological and molecular features as their pontine counterparts

Affiliations

The pediatric supratentorial MYCN-amplified high-grade gliomas methylation class presents the same radiological, histopathological and molecular features as their pontine counterparts

A Tauziède-Espariat et al. Acta Neuropathol Commun. .
No abstract available

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no conflict of interest directly related to the topic of this article.

Figures

Fig. 1
Fig. 1
Radiological features of two supratentorial HGG-MYCN. First line: Case 3. (a) T1-weighted images after contrast media injection, (b) T2-weighted images, and (c) diffusion-weighted images: a solid lesion with peri-lesional edema, homogeneous enhancement and hypercellularity (apparent diffusion coefficient (ADC) on diffusion weighted images is restricted in the main part of the tumor). Second line: Case 1. (d) T1-weighted images after contrast media injection, (e) FLAIR-weighted images and (f) cerebral blood flow map using arterial spin labeling: a solid and infiltrative lesion with homogeneous enhancement and high cerebral blood flow
Fig. 2
Fig. 2
Results of the systematic review of supratentorial molecular subgroups of pediatric HGG. a There was no significant difference in terms of progression-free survival (PFS) between HGG-MYCN, HGG-RTKI, supratentorial H3 K27M-mutant HGG and H3 G34-mutant HGG in univariate analysis (p = 0.421). b There was no significant difference in terms of progression-free survival (PFS) between HGG-MYCN, HGG-RTKI, supratentorial H3 K27M-mutant HGG and H3 G34-mutant HGG in univariate analysis (p = 0.109). c There was a significant difference in terms of overall survival (OS) between supratentorial HGG-MYCN and pontine HGG-MYCN in univariate analysis (p < 0.001)
Fig. 3
Fig. 3
Histomolecular features of HGG-MYCN. a Diffuse and solid proliferation with several nodules infiltrating the brain parenchyma (arrowheads) and the leptomeninge with large vessels (asterisk) (Case 2, HPS, × 100 magnification). b Dense proliferation of tumour cells organized in nodules following Virchow-Robin spaces around capillaries (Case 2, HPS, × 250 magnification). c Highly cellular and undifferenciated proliferation composed of alternating fascicles and nodules (Case 2, HPS, × 250 magnification). d Highly malignant tumor with microvascular proliferation (arrowhead) and necrosis (Case 2, HPS, × 400 magnification). e Embryonal proliferation composed of hyperchromatic cells presenting anisocaryotic nuclei with numerous apoptotic bodies (Case 3, HPS, × 400 magnification). f Elevated proliferation index (Case 2, MIB, × 400 magnification). g Diffuse expression of Olig2 (Case 2, × 400 magnification). h Focal expression of GFAP by tumor cells (Case 2, × 400 magnification). i Expression of neurofilament in numerous tumor cells (Case 3, × 400 magnification). j Nuclear accumulation of p53 (Case 2, × 400 magnification). k PTEN loss of expression in tumor cells (endothelial cells as positive internal controls). l High-level of MYCN amplification by FISH analysis with MYCN locus in green signals and control centromeric in red signals (Case 4). Black scale bars represent 1 mm (a), 100 μm (b) and 50 μm (C to K)

References

    1. Aihara K, Mukasa A, Gotoh K, Saito K, Nagae G, Tsuji S, Tatsuno K, Yamamoto S, Takayanagi S, Narita Y, Shibui S, Aburatani H, Saito N. H3F3A K27M mutations in thalamic gliomas from young adult patients. Neuro-Oncol. 2014;16:140–146. doi: 10.1093/neuonc/not144. - DOI - PMC - PubMed
    1. Broniscer A, Hwang SN, Chamdine O, Lin T, Pounds S, Onar-Thomas A, Chi L, Shurtleff S, Allen S, Gajjar A, Northcott P, Orr BA. Bithalamic gliomas may be molecularly distinct from their unilateral high-grade counterparts. Brain Pathol Zurich Switz. 2018;28:112–120. doi: 10.1111/bpa.12484. - DOI - PMC - PubMed
    1. Kleinschmidt-DeMasters BK, Mulcahy Levy JM. H3 K27M-mutant gliomas in adults vs. children share similar histological features and adverse prognosis. Clin Neuropathol. 2018;37(2018):53–63. doi: 10.5414/NP301085. - DOI - PMC - PubMed
    1. Korshunov A, Schrimpf D, Ryzhova M, Sturm D, Chavez L, Hovestadt V, Sharma T, Habel A, Burford A, Jones C, Zheludkova O, Kumirova E, Kramm CM, Golanov A, Capper D, von Deimling A, Pfister SM, Jones DTW (2017) H3−/IDH-wild type pediatric glioblastoma is comprised of molecularly and prognostically distinct subtypes with associated oncogenic drivers. Acta Neuropathol (Berl). 10.1007/s00401-017-1710-1 - PubMed
    1. Mackay A, Burford A, Molinari V, Jones DTW, Izquierdo E, Brouwer-Visser J, Giangaspero F, Haberler C, Pietsch T, Jacques TS, Figarella-Branger D, Rodriguez D, Morgan PS, Raman P, Waanders AJ, Resnick AC, Massimino M, Garrè ML, Smith H, Capper D, Pfister SM, Würdinger T, Tam R, Garcia J, Thakur MD, Vassal G, Grill J, Jaspan T, Varlet P, Jones C. Molecular, pathological, radiological, and immune profiling of non-brainstem pediatric high-grade Glioma from the HERBY phase II randomized trial. Cancer Cell. 2018;33:829–842.e5. doi: 10.1016/j.ccell.2018.04.004. - DOI - PMC - PubMed

Publication types

Substances

LinkOut - more resources