Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jul;28(7):876-887.
doi: 10.1016/j.jsps.2020.05.003. Epub 2020 May 15.

Magnetism in drug delivery: The marvels of iron oxides and substituted ferrites nanoparticles

Affiliations
Review

Magnetism in drug delivery: The marvels of iron oxides and substituted ferrites nanoparticles

Noor Natheer Al-Rawi et al. Saudi Pharm J. 2020 Jul.

Abstract

In modern drug delivery, seeking a drug delivery system (DDS) with a modifiable skeleton for proper targeting of loaded actives to specific sites in the body is of extreme importance for a successful therapy. Magnetically guided nanosystems, where particles such as iron oxides are guided to specific regions using an external magnetic field, can provide magnetic resonance imaging (MRI) while delivering a therapeutic payload at the same time, which represents a breakthrough in disease therapy and make MNPs excellent candidates for several biomedical applications. In this review, magnetic nanoparticles (MNPs) along with their distinguishable properties, including pharmacokinetics and toxicity, especially in cancer therapy will be discussed. The potential perspective of using other elements within the MNP system to reduce toxicity, improve pharmacokinetics, increase the magnetization ability, improve physical targeting precision and/or widen the scope of its biomedical application will be also discussed.

Keywords: Cancer therapy; Gene delivery; Magnetic nanoparticles; Metal ferrites; Synthesis strategies; Theranostics.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Applications of MNPs.
Fig. 2
Fig. 2
Components of a MNP.
Fig. 3
Fig. 3
Detailed steps of the co-precipitation method.
Fig. 4
Fig. 4
The different elimination routes undertaken by MNPs.
Fig. 5
Fig. 5
Illustration of Fenton reaction.
Fig. 6
Fig. 6
RNA-induced silencing complex (RISC) and gene silencing via mRNA cleavage.

References

Papers of special note have been highlighted as: * of interest ** of considerable interest.

    1. Ahmed, I.S., El-Hosary, R., Shalaby, S., Abd-Rabo, M.M., Elkhateeb, D.G., Nour, S., 2016. PD-PK evaluation of freeze-dried atorvastatin calcium-loaded poly-ε-caprolactone nanoparticles. Int. J. Pharm. 10.1016/j.ijpharm.2016.03.045. - DOI - PubMed
    1. Ahmed I.S., El Hosary R., Hassan M.A., Haider M., Abd-Rabo M.M. Efficacy and Safety Profiles of Oral Atorvastatin-Loaded Nanoparticles: Effect of Size Modulation on Biodistribution. Mol. Pharm. 2018;15:247–255. doi: 10.1021/acs.molpharmaceut.7b00856. - DOI - PubMed
    1. Alexiou C., Tietze R., Schreiber E., Jurgons R., Richter H., Trahms L., Rahn H., Odenbach S., Lyer S. Cancer therapy with drug loaded magnetic nanoparticlesmagnetic drug targeting. J. Magn. Magn. Mater. 2011;323:1404–1407. doi: 10.1016/j.jmmm.2010.11.059. - DOI
    1. Ali, A., Zafar, H., Zia, M., ul Haq, I., Phull, A.R., Ali, J.S., Hussain, A., 2016. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 9, 49–67. 10.2147/NSA.S99986. - DOI - PMC - PubMed
    1. Arruebo M., Fernández-Pacheco R., Ibarra M.R., Santamaría J. Magnetic nanoparticles for drug delivery The potential of magnetic NPs stems from the intrinsic properties of their magnetic cores combined with their drug loading capability and the biochemical properties that can be bestowed on them by means of a suitab. 2007;2:22–32.

**Substituted ferrites having excellent catalytic performance promote them for multiple applications and biological activities

    1. Chen Z., Wu C., Zhang Z., Wu W., Wang X., Yu Z. Synthesis, functionalization, and nanomedical applications of functional magnetic nanoparticles. Chinese Chem. Lett. 2018;29:1601–1608. doi: 10.1016/j.cclet.2018.08.007. - DOI
    1. Cheung, J., Chino, T., Co, C., Konopka, K., Düzgünes, N., 2016. A nonviral vector with transfection activity comparable with adenoviral transduction. Ther. Deliv. 10.4155/tde-2016-0054. - DOI - PubMed
    1. Dadfar, S.M., Roemhild, K., Drude, N.I., von Stillfried, S., Knüchel, R., Kiessling, F., Lammers, T., 2019. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Adv. Drug Deliv. Rev. 10.1016/j.addr.2019.01.005. - DOI - PMC - PubMed
    1. Daou T.J., Pourroy G., Bégin-Colin S., Grenèche J.M., Ulhaq-Bouillet C., Legaré P., Bernhardt P., Leuvrey C., Rogez G. Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem. Mater. 2006;18:4399–4404. doi: 10.1021/cm060805r. - DOI
    1. Demirer G.S., Okur A.C., Kizilel S. Synthesis and design of biologically inspired biocompatible iron oxide nanoparticles for biomedical applications. J. Mater. Chem. B. 2015;3:7831–7849. doi: 10.1039/c5tb00931f. - DOI - PubMed

* Very interesting theranostic application about the use of pH-sensitive magnetic nano-grenades (PMNs) in targeting tumor cells

    1. Maehara T., Konishi K., Kamimori T., Aono H., Hirazawa H., Naohara T., Nomura S., Kikkawa H., Watanabe Y., Kawachi K. Selection of ferrite powder for thermal coagulation therapy with alternating magnetic field. J. Mater. Sci. 2005;40:135–138. doi: 10.1007/s10853-005-5698-x. - DOI
    1. Mah, C., Fraites, T.J., Zolotukhin, I., Song, S., Flotte, T.R., Dobson, J., Batich, C., Byrne, B.J., 2002. Improved method of recombinant AAV2 delivery for systemic targeted gene therapy. Mol. Ther. 10.1006/mthe.2001.0636. - DOI - PubMed
    1. Maity D., Ding J., Xue J.M. Synthesis of magnetite nanoparticles by thermal decomposition: Time, temperature, surfactant and solvent effects. Funct. Mater. Lett. 2008;1:189–193. doi: 10.1142/S1793604708000381. - DOI
    1. Majidi S., Sehrig F.Z., Farkhani S.M., Goloujeh M.S., Akbarzadeh A. Current methods for synthesis of magnetic nanoparticles. Artif. Cells, Nanomedicine Biotechnol. 2016;44:722–734. doi: 10.3109/21691401.2014.982802. - DOI - PubMed
    1. Mamon H.J., Yeap B.Y., Jänne P.A., Reblando J., Shrager S., Jaklitsch M.T., Mentzer S., Lukanich J.M., Sugarbaker D.J., Baldini E.H., Berman S., Skarin A., Bueno R. High risk of brain metastases in surgically staged IIIA non-small-cell lung cancer patients treated with surgery, chemotherapy, and radiation. J. Clin. Oncol. 2005;23:1530–1537. doi: 10.1200/JCO.2005.04.123. - DOI - PubMed

*Interesting review handling the aspect of nanomaterials in gene delivery

    1. Scherer F., Anton M., Schillinger U., Henke J., Bergemann C., Krüger A., Gänsbacher B., Plank C. Magnetofection: Enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther. 2002 doi: 10.1038/sj.gt.3301624. - DOI - PubMed
    1. Selvam R., Ramasamy S., Mohiyuddin S., Enoch I.V.M.V., Gopinath P., Filimonov D. Molecular encapsulator–appended poly(vinyl alcohol) shroud on ferrite nanoparticles. Augmented cancer–drug loading and anticancer property. Mater. Sci. Eng., C. 2018;93:125–133. doi: 10.1016/j.msec.2018.07.058. - DOI - PubMed
    1. Shapiro B., Kulkarni S., Nacev A., Muro S., Stepanov P.Y., Weinberg I.N. Open challenges in magnetic drug targeting. Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology. 2015;7:446–457. doi: 10.1002/wnan.1311. - DOI - PMC - PubMed
    1. Singamaneni S., Bliznyuk V.N., Binek C., Tsymbal E.Y. Magnetic nanoparticles: Recent advances in synthesis, self-assembly and applications. J. Mater. Chem. 2011;21:16819–16845. doi: 10.1039/c1jm11845e. - DOI
    1. Soo Choi, H., Liu, W., Misra, P., Tanaka, E., Zimmer, J.P., Itty Ipe, B., Bawendi, M.G., Frangioni, J. V., 2007. Renal clearance of quantum dots. Nat. Biotechnol. 10.1038/nbt1340. - DOI - PMC - PubMed

**The aim of this article was to create well-dispersed ultrasmall superparamagnetic magnesium ferrite nanocrystals, with a particle size of ∼3.7 nm, high saturation magnetization, and a low Mg content of 10%

    1. Tavakoli A., Sohrabi M., Kargari A. A review of methods for synthesis of nanostructured metals with emphasis on iron compounds. Chem. Pap. 2007;61:151–170. doi: 10.2478/s11696-007-0014-7. - DOI
    1. Teja A.S., Koh P.Y. Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. 2009;55:22–45. doi: 10.1016/j.pcrysgrow.2008.08.003. - DOI
    1. Tran P.H.L., Tran T.T.D., Vo T. Van. Polymer conjugate-based nanomaterials for drug delivery. J. Nanosci. Nanotechnol. 2014;14:815–827. doi: 10.1166/jnn.2014.8901. - DOI - PubMed
    1. Umut, E., 2013. Surface Modification of Nanoparticles Used in Biomedical Applications. Mod. Surf. Eng. Treat. 10.5772/55746. - DOI
    1. Voronina, N., Lemcke, H., Wiekhorst, F., Kühn, J.P., Rimmbach, C., Steinhoff, G., David, R., 2016. Non-viral magnetic engineering of endothelial cells with microRNA and plasmid-DNA—An optimized targeting approach. Nanomedicine Nanotechnology, Biol. Med. 10.1016/j.nano.2016.06.015. - DOI - PubMed

* A novel system of (IR820-CSQ-Fe) implemented for combined (MRI/MSOT/FI) and photodynamic therapy

    1. Zhu L., Zhou Z., Mao H., Yang L. Magnetic nanoparticles for precision oncology: Theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy. Nanomedicine. 2017 doi: 10.2217/nnm-2016-0316. - DOI - PMC - PubMed

LinkOut - more resources