Nitroxide-enhanced MRI of cardiovascular oxidative stress
- PMID: 32648316
- PMCID: PMC7904044
- DOI: 10.1002/nbm.4359
Nitroxide-enhanced MRI of cardiovascular oxidative stress
Abstract
Background: In vivo imaging of oxidative stress can facilitate the understanding and treatment of cardiovascular diseases. We evaluated nitroxide-enhanced MRI with 3-carbamoyl-proxyl (3CP) for the detection of myocardial oxidative stress.
Methods: Three mouse models of cardiac oxidative stress were imaged, namely angiotensin II (Ang II) infusion, myocardial infarction (MI), and high-fat high-sucrose (HFHS) diet-induced obesity (DIO). For the Ang II model, mice underwent MRI at baseline and after 7 days of Ang II (n = 8) or saline infusion (n = 8). For the MI model, mice underwent MRI at baseline (n = 10) and at 1 (n = 8), 4 (n = 9), and 21 (n = 8) days after MI. For the HFHS-DIO model, mice underwent MRI at baseline (n = 20) and 18 weeks (n = 13) after diet initiation. The 3CP reduction rate, Kred , computed using a tracer kinetic model, was used as a metric of oxidative stress. Dihydroethidium (DHE) staining of tissue sections was performed on Day 1 after MI.
Results: For the Ang II model, Kred was higher after 7 days of Ang II versus other groups (p < 0.05). For the MI model, Kred , in the infarct region was significantly elevated on Days 1 and 4 after MI (p < 0.05), whereas Kred in the noninfarcted region did not change after MI. DHE confirmed elevated oxidative stress in the infarct zone on Day 1 after MI. After 18 weeks of HFHS diet, Kred was higher in mice after diet versus baseline (p < 0.05).
Conclusions: Nitroxide-enhanced MRI noninvasively quantifies tissue oxidative stress as one component of a multiparametric preclinical MRI examination. These methods may facilitate investigations of oxidative stress in cardiovascular disease and related therapies.
Keywords: MRI; cardiovascular; heart; nitroxides; oxidative stress; preclinical.
© 2020 John Wiley & Sons, Ltd.
Conflict of interest statement
CONFLICTS OF INTEREST
The authors declare that they have no competing interests.
Figures






References
-
- Duilio C, Ambrosio G, Kuppusamy P, DiPaula A, Becker LC, Zweier JL. Neutrophils are primary source of O2 radicals during reperfusion after prolonged myocardial ischemia. Am J Physiol Heart Circ Physiol. 2001;280(6):H2649–H2657. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous