Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2020 Sep 15:883:173347.
doi: 10.1016/j.ejphar.2020.173347. Epub 2020 Jul 8.

PCSK9 inhibitor effectively attenuates cardiometabolic impairment in obese-insulin resistant rats

Affiliations
Comparative Study

PCSK9 inhibitor effectively attenuates cardiometabolic impairment in obese-insulin resistant rats

Patchareeya Amput et al. Eur J Pharmacol. .

Abstract

Long-term high-fat diet consumption causes obese-insulin resistance and cardiac mitochondrial dysfunction, leading to impaired left ventricular (LV) function. Atorvastatin effectively improved lipid profiles in obese patients. However, inadequate reduction in low density lipoprotein cholesterol (LDL-C) level was found. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor effectively reduced LDL-C levels. We hypothesized that this PCSK9 inhibitor has a greater efficacy in attenuating cardiometabolic impairments than atorvastatin in obese-insulin resistant rats. Female rats were fed with either a high fat or normal diet for 12 weeks. High fat diet fed rats (HFD) were then divided into 3 groups and were given vehicle, atorvastatin (40 mg/kg/day; s.c.), or PCSK9 inhibitor (4 mg/kg/day; s.c.) for additional 3 weeks. The metabolic parameters, cardiac and mitochondrial function and [Ca2+]i transients were determined. HFD rats developed obese-insulin resistance as indicated by increased plasma insulin and HOMA index. Although high-fat diet fed rats treated with vehicle (HFV) rats had markedly impaired LV function as indicated by reduced %LVFS, impaired cardiac mitochondrial function, and [Ca2+]i transient regulation, these impairments were attenuated in high-fat diet fed rats treated with atorvastatin (HFA) and high-fat diet fed rats treated with PCSK9 inhibitor (HFP) rats. However, these improvements were greater in HFP rats than HFA rats. Our findings indicated that the PCSK9 inhibitor exerted greater cardioprotection than atorvastatin through improved mitochondrial function in obese-insulin resistant rats.

Keywords: Atorvastatin; Heart; Insulin resistance; Mitochondria; Obese; PCSK9 inhibitor.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms