Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Sep;21(1):71-9.
doi: 10.1002/jnr.490210111.

Basic fibroblast growth factor and epidermal growth factor exert differential trophic effects on CNS neurons

Affiliations

Basic fibroblast growth factor and epidermal growth factor exert differential trophic effects on CNS neurons

R S Morrison et al. J Neurosci Res. 1988 Sep.

Abstract

Epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) are potent mitogenic proteins capable of inducing cell division in a wide variety of cell types. In addition to their mitogenic properties, both proteins have recently been shown to enhance survival and process outgrowth from neurons of central nervous system origin. The full spectrum of neuronal subtypes responding to these factors has not been elucidated. In the present study, EGF was found to enhance survival and process outgrowth of primary cultures of cerebellar neurons of neonatal rat brain. This effect was dose-dependent and was observed with EGF concentrations as low as 100 pg/ml. In marked contrast, bFGF was ineffective in enhancing survival or neurite elongation from cerebellar neurons when tested in the range of 0.1 to 10.0 ng/ml. However, within this concentration range, bFGF did prove effective in stimulating an increase in [3H]thymidine incorporation into primary cultures of cerebellar astrocytes, demonstrating that bFGF was active and that cells in the cerebellum do respond to bFGF. These results suggest that EGF or an EGF-like peptide may act as a neurite elongation and maintenance factor for cerebellar neurons. EGF has now been shown to support striatal, cortical, and cerebellar neurons, suggesting that this factor may have trophic activity throughout the central nervous system. bFGF, in contrast, appears to exert its effects on limited populations of neurons.

PubMed Disclaimer

Publication types

LinkOut - more resources