The relative importance of plasticity versus genetic differentiation in explaining between population differences; a meta-analysis
- PMID: 32656957
- DOI: 10.1111/ele.13565
The relative importance of plasticity versus genetic differentiation in explaining between population differences; a meta-analysis
Abstract
Both plasticity and genetic differentiation can contribute to phenotypic differences between populations. Using data on non-fitness traits from reciprocal transplant studies, we show that approximately 60% of traits exhibit co-gradient variation whereby genetic differences and plasticity-induced differences between populations are the same sign. In these cases, plasticity is about twice as important as genetic differentiation in explaining phenotypic divergence. In contrast to fitness traits, the amount of genotype by environment interaction is small. Of the 40% of traits that exhibit counter-gradient variation the majority seem to be hyperplastic whereby non-native individuals express phenotypes that exceed those of native individuals. In about 20% of cases plasticity causes non-native phenotypes to diverge from the native phenotype to a greater extent than if plasticity was absent, consistent with maladaptive plasticity. The degree to which genetic differentiation versus plasticity can explain phenotypic divergence varies a lot between species, but our proxies for motility and migration explain little of this variation.
Keywords: Counter-gradient variation; Gene-flow; local adaptation; phenotypic plasticity.
© 2020 The Authors. Ecology Letters published by John Wiley & Sons Ltd.
References
REFERENCES
-
- Acasuso-Rivero, C., Murren, C.J., Schlichting, C.D. & Steiner, U.K. (2019). Adaptive phenotypic plasticity for life-history and less fitness-related traits. Proc. R. Soc. B, 286, 20190653.
-
- Blanquart, F., Kaltz, O., Nuismer, S.L. & Gandon, S. (2013). A practical guide to measuring local adaptation. Ecol. Lett., 16, 1195-1205.
-
- Bohonak, A.J. (1999). Dispersal, gene flow, and population structure. Q. Rev. Biol., 74, 21-45.
-
- Boutin, S. & Lane, J.E. (2014). Climate change and mammals: evolutionary versus plastic responses. Evol. Appl., 7, 29-41.
-
- Bradshaw, A. (1972). Some of the evolutionary consequences of being a plant. Evol. Biol., 5, 25-47.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
