Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Oct 1;133(4):879-891.
doi: 10.1097/ALN.0000000000003443.

Assessment of Right Heart Function during Extracorporeal Therapy by Modified Thermodilution in a Porcine Model

Assessment of Right Heart Function during Extracorporeal Therapy by Modified Thermodilution in a Porcine Model

Kaspar F Bachmann et al. Anesthesiology. .

Abstract

Background: Veno-arterial extracorporeal membrane oxygenation therapy is a growing treatment modality for acute cardiorespiratory failure. Cardiac output monitoring during veno-arterial extracorporeal membrane oxygenation therapy remains challenging. This study aims to validate a new thermodilution technique during veno-arterial extracorporeal membrane oxygenation therapy using a pig model.

Methods: Sixteen healthy pigs were centrally cannulated for veno-arterial extracorporeal membrane oxygenation, and precision flow probes for blood flow assessment were placed on the pulmonary artery. After chest closure, cold boluses of 0.9% saline solution were injected into the extracorporeal membrane oxygenation circuit, right atrium, and right ventricle at different extracorporeal membrane oxygenation flows (4, 3, 2, 1 l/min). Rapid response thermistors in the extracorporeal membrane oxygenation circuit and pulmonary artery recorded the temperature change. After calculating catheter constants, the distributions of injection volumes passing each circuit were assessed and enabled calculation of pulmonary blood flow. Analysis of the exponential temperature decay allowed assessment of right ventricular function.

Results: Calculated blood flow correlated well with measured blood flow (r2 = 0.74, P < 0.001). Bias was -6 ml/min [95% CI ± 48 ml/min] with clinically acceptable limits of agreement (668 ml/min [95% CI ± 166 ml/min]). Percentage error varied with extracorporeal membrane oxygenation blood flow reductions, yielding an overall percentage error of 32.1% and a percentage error of 24.3% at low extracorporeal membrane oxygenation blood flows. Right ventricular ejection fraction was 17 [14 to 20.0]%. Extracorporeal membrane oxygenation flow reductions increased end-diastolic and end-systolic volumes with reductions in pulmonary vascular resistance. Central venous pressure and right ventricular ejection fractions remained unchanged. End-diastolic and end-systolic volumes correlated highly (r2 = 0.98, P < 0.001).

Conclusions: Adapted thermodilution allows reliable assessment of cardiac output and right ventricular behavior. During veno-arterial extracorporeal membrane oxygenation weaning, the right ventricle dilates even with stable function, possibly because of increased venous return.

PubMed Disclaimer

Comment in

Publication types

LinkOut - more resources