Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 2020 Jul 13;20(1):278.
doi: 10.1186/s12883-020-01854-6.

A case report of an intermediate phenotype between congenital myasthenic syndrome and D-2- and L-2-hydroxyglutaric aciduria due to novel SLC25A1 variants

Affiliations
Case Reports

A case report of an intermediate phenotype between congenital myasthenic syndrome and D-2- and L-2-hydroxyglutaric aciduria due to novel SLC25A1 variants

Wenhui Li et al. BMC Neurol. .

Abstract

Background: Variants in the SLC25A1 gene are associated with a severe neurometabolic disease, D-2- and L-2-hydroxyglutaric aciduria (D/L-2-HGA). A report in 2014 presented the first account of congenital myasthenic syndrome (CMS) with mild intellectual disability (ID) caused by SLC25A1. To date, only two missense variants in SLC25A1 have been linked to CMS.

Case presentations: A Chinese boy presented fatigable muscular weakness, myasthenic crisis, epilepsy and developmental delay along with mild elevation of urinary 2-ketoglutarate (2-KG) and lactic acid levels. He showed a partial response to pyridostigmine. Genetic analysis using trio whole-exome sequencing (WES), Sanger sequencing, and cosegregation analyses revealed two novel pathogenic variants of SLC25A1 (c.628C > T, p.R210X; c.145G > A, p.V49M).

Conclusions: We report a boy who carries novel compound heterozygous variants of SLC25A1 and presents a phenotype intermediate between CMS and D/L-2-HGA. This case expands the range of known phenotypes and genotypes associated with SLC25A1.

Keywords: Congenital myasthenic syndrome; D-2- and L-2-hydroxyglutaric aciduria; Phenotype; SLC25A1.

PubMed Disclaimer

Conflict of interest statement

None of the authors has any competing interests or conflicts of interest.

Figures

Fig. 1
Fig. 1
Results of the Sanger sequencing. Electropherograms of the Sanger sequencing show the two heterozygous variants (c.145G > A on the left and c.628C > T on the right) in the patient. The mother was heterozygous for c.145G > A, while the father was heterozygous for c.628C > T. The sister was heterozygous for c.628C > T (p.R210X). The variants are indicated by the black arrows
Fig. 2
Fig. 2
Distribution of 27 novel and previously published SLC25A1 variants (including our case in red). The upper panel of the schematic shows all pathogenic variants in patients in whom CMS was the main feature, while the mutations in the lower panel correspond to the individuals who had been diagnosed with D/L-2-HGA

References

    1. Kaplan RS, Mayor JA, Wood DO. The mitochondrial tricarboxylate transport protein. cDNA cloning, primary structure, and comparison with other mitochondrial transport proteins. J Biol Chem. 1993;268:13682–13690. - PubMed
    1. Nota B, Struys EA, Pop A, et al. Deficiency in SLC25A1, encoding the mitochondrial citrate carrier, causes combined D-2- and L-2- hydroxyglutaric aciduria. Am J Hum Genet. 2013;92:627–631. doi: 10.1016/j.ajhg.2013.03.009. - DOI - PMC - PubMed
    1. Cohen I, Staretz-Chacham O, Wormser O, et al. A novel homozygous SLC25A1 mutation with impaired mitochondrial complex V: possible phenotypic expansion. Am J Med Genet A. 2018;176:330–336. doi: 10.1002/ajmg.a.38574. - DOI - PubMed
    1. Smith A, McBride S, Marcadier JL, et al. Severe neonatal presentation of mitochondrial citrate carrier (SLC25A1) deficiency. JIMD Rep. 2016;30:73–79. doi: 10.1007/8904_2016_536. - DOI - PMC - PubMed
    1. Chaouch A, Porcelli V, Cox D, et al. Mutations in the mitochondrial citrate carrier SLC25A1 are associated with impaired neuromuscular transmission. J Neuromuscul Dis. 2014;1:75–90. doi: 10.3233/JND-140021. - DOI - PMC - PubMed

Publication types

MeSH terms

Substances

Supplementary concepts