Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Oct;48(10):903-916.
doi: 10.1124/dmd.120.090498. Epub 2020 Jul 14.

Quantification of the Impact of Partition Coefficient Prediction Methods on Physiologically Based Pharmacokinetic Model Output Using a Standardized Tissue Composition

Affiliations
Free article

Quantification of the Impact of Partition Coefficient Prediction Methods on Physiologically Based Pharmacokinetic Model Output Using a Standardized Tissue Composition

Kiersten Utsey et al. Drug Metab Dispos. 2020 Oct.
Free article

Abstract

Tissue:plasma partition coefficients are key parameters in physiologically based pharmacokinetic (PBPK) models, yet the coefficients are challenging to measure in vivo. Several mechanistic-based equations have been developed to predict partition coefficients using tissue composition information and the compound's physicochemical properties, but it is not clear which, if any, of the methods is most appropriate under given circumstances. Complicating the evaluation, each prediction method was developed, and is typically employed, using a different set of tissue composition information, thereby making a controlled comparison impossible. This study proposed a standardized tissue composition for humans that can be used as a common input for each of the five frequently used prediction methods. These methods were implemented in R and were used to predict partition coefficients for 11 drugs, classified as strong bases, weak bases, acids, neutrals, and zwitterions. PBPK models developed in R (mrgsolve) for each drug and each set of partition coefficient predictions were compared with respective observed plasma concentration data. Percent root mean square error and half-life percent error were used to evaluate the accuracy of the PBPK model predictions using each partition coefficient method as summarized by strong bases, weak bases, acids, neutrals, and zwitterions characterization. The analysis indicated that no partition coefficient method consistently yielded the most accurate PBPK model predictions. As such, PBPK model predictions using all partition coefficient methods should be considered during drug development. SIGNIFICANCE STATEMENT: Several mechanistic-based methods exist to predict tissue:plasma partition coefficients critical to PBPK modeling. Controlled comparisons are confounded by the use of different tissue composition values for each method; a standardized tissue composition was proposed. Resulting assessments indicated that no method was consistently superior; therefore, sensitivity of PBPK predictions to each method may be warranted prior to model optimization.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources