Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Sep;2(3):267-74.
doi: 10.1016/0889-1591(88)90028-1.

Interleukin-1 induces changes in norepinephrine metabolism in the rat brain

Affiliations

Interleukin-1 induces changes in norepinephrine metabolism in the rat brain

A Kabiersch et al. Brain Behav Immun. 1988 Sep.

Abstract

Interleukin-1 (IL-1) is a hormone that, apart from playing a key role in immune and inflammatory processes, can also affect mechanisms under brain control. To gain a better understanding of the action of this cytokine on the CNS, its effects on the contents of norepinephrine (NE), dopamine (DA) and serotonin (5-HT), and their main metabolites and precursors, were evaluated in different regions of the forebrain, brain stem, and spinal cord. Following administration of human recombinant IL-1 (beta form) to rats, a modest decrease in the content of NE was observed in the hypothalamus as well as in the dorsal posterior brain stem. However, the most relevant finding was that 3-methoxy-4-hydroxyphenylethylene glycol (MHPG), the main NE metabolite, and the relation MHPG/NE were increased in all the regions studied, revealing a stimulatory effect of IL-1 on NE metabolism in the CNS. This effect seems to be specific for NE since no comparable changes in the brain content of DA, 5-HT, or its metabolite, 5-hydroxyindole acetic acid, were detected after administration of the cytokine. However, tryptophan was significantly increased in all brain regions and in the cervical spinal cord. The capacity of IL-1 to affect the metabolism of NE, a neurotransmitter involved in the control of a variety of brain functions, provides further proof for the relevance of this cytokine in brain-immune interactions.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources