Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul;583(7816):391-395.
doi: 10.1038/s41586-020-2464-9. Epub 2020 Jul 15.

Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst

Affiliations

Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst

Tian-Nan Ye et al. Nature. 2020 Jul.

Abstract

Ammonia (NH3) is pivotal to the fertilizer industry and one of the most commonly produced chemicals1. The direct use of atmospheric nitrogen (N2) had been challenging, owing to its large bond energy (945 kilojoules per mole)2,3, until the development of the Haber-Bosch process. Subsequently, many strategies have been explored to reduce the activation barrier of the N≡N bond and make the process more efficient. These include using alkali and alkaline earth metal oxides as promoters to boost the performance of traditional iron- and ruthenium-based catalysts4-6 via electron transfer from the promoters to the antibonding bonds of N2 through transition metals7,8. An electride support further lowers the activation barrier because its low work function and high electron density enhance electron transfer to transition metals9,10. This strategy has facilitated ammonia synthesis from N2 dissociation11 and enabled catalytic operation under mild conditions; however, it requires the use of ruthenium, which is expensive. Alternatively, it has been shown that nitrides containing surface nitrogen vacancies can activate N2 (refs. 12-15). Here we report that nickel-loaded lanthanum nitride (LaN) enables stable and highly efficient ammonia synthesis, owing to a dual-site mechanism that avoids commonly encountered scaling relations. Kinetic and isotope-labelling experiments, as well as density functional theory calculations, confirm that nitrogen vacancies are generated on LaN with low formation energy, and efficiently bind and activate N2. In addition, the nickel metal loaded onto the nitride dissociates H2. The use of distinct sites for activating the two reactants, and the synergy between them, results in the nickel-loaded LaN catalyst exhibiting an activity that far exceeds that of more conventional cobalt- and nickel-based catalysts, and that is comparable to that of ruthenium-based catalysts. Our results illustrate the potential of using vacancy sites in reaction cycles, and introduce a design concept for catalysts for ammonia synthesis, using naturally abundant elements.

PubMed Disclaimer

References

    1. Smil, V. Detonator of the population explosion. Nature 400, 415 (1999). - DOI
    1. Pool, A. J., Lobkovsky, E. & Chirik, P. J. Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex. Nature 427, 527–530 (2004). - DOI
    1. Gambarotta, S. & Scott, J. Multimetallic cooperative activation of N2. Angew. Chem. Int. Ed. 43, 5298–5308 (2004). - DOI
    1. van Ommen, J. G., Bolink, W. J., Prasad, J. & Mars, P. The nature of the potassium compound acting as a promoter in iron–alumina catalysts for ammonia synthesis. J. Catal. 38, 120–127 (1975). - DOI
    1. Ozaki, A. Development of alkali-promoted ruthenium as a novel catalyst for ammonia synthesis. Acc. Chem. Res. 14, 16–21 (1981). - DOI

Publication types

LinkOut - more resources