Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug 28;5(8):2545-2554.
doi: 10.1021/acssensors.0c00870. Epub 2020 Jul 28.

Large-Area, Wearable, Self-Powered Pressure-Temperature Sensor Based on 3D Thermoelectric Spacer Fabric

Affiliations

Large-Area, Wearable, Self-Powered Pressure-Temperature Sensor Based on 3D Thermoelectric Spacer Fabric

Mufang Li et al. ACS Sens. .

Abstract

The rapid development of wearable devices puts forward higher requirements for mass-produced integrated smart systems that incorporate multiple electric components, such as energy supplying, multisensing, and communicating. To synchronously realize continuously self-powering, multifunctional sensing, distinguish signals from different stimuli, and productively design and fabricate a large-area sensing array, an all-fabric-based self-powered pressure-temperature-sensing electronic skin (e-skin) was prepared in this study by assembling highly flexible and compressible 3D spacer fabric (SF) and the thermoelectric poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT:PSS). The all-fabric-based e-skin can efficiently and accurately sense the temperature with a detection resolution of 0.1 K and a response time of 1 s, as well as pressure within a wide range of 200 Pa to 200 kPa and a fast response time of 80 ms. The electricity necessary for driving the sensor can be provided by the temperature difference between the body and environment. Notably, independent voltage and current signals can be generated and read out under the simultaneous temperature-pressure stimuli. For the first time, a real waistcoat-like e-skin with electricity-generating and pressure-temperature-sensing functions on the whole area was designed and prepared by a simple and easy to scale-up production method. All of these features make the developed all-fabric self-powered sensor have very promising applications.

Keywords: 3D thermoelectric fabric; multifunctional e-skin; pressure−temperature sensor; self-powered; wearable electronics.

PubMed Disclaimer

Publication types