Top-level MET gene copy number gain defines a subtype of poorly differentiated pulmonary adenocarcinomas with poor prognosis
- PMID: 32676323
- PMCID: PMC7354108
- DOI: 10.21037/tlcr-19-339
Top-level MET gene copy number gain defines a subtype of poorly differentiated pulmonary adenocarcinomas with poor prognosis
Abstract
Background: MET amplifications occur in human tumors, including non-small cell lung cancer (NSCLC). MET inhibitors have demonstrated some clinical activity in MET amplified NSCLC, presumably with a gene dose effect. However, the definition of MET positivity or MET amplification as a potential oncogenic driver is still under debate. In this study, we aimed to establish the molecular subgroup of NSCLC with the highest unequivocal MET amplification level and to describe the prevalence, and histologic and clinical phenotype of this subgroup.
Methods: A total of 373 unselected patients with NSCLC were consecutively tested for MET gene copy number (GCN) by FISH. Mean GCN, MET/CEN7 ratio and other FISH parameters were identified and correlated with morphological and molecular pathological characteristics of the tumors as well as with clinical data.
Results: Based on the variability of obtained data a top-level category of MET amplification was newly defined (>90th percentile of average GCN; ≥10 MET gene copies per tumor cell). This criterion was fulfilled in 2% of analyzed tumors. These tumors were exclusively poorly differentiated adenocarcinomas with a predominant solid subtype and pleomorphic features. Rarely, co-alterations were detected (KRAS mutation or MET exon 14 skipping mutation). In this top-level group, there were no EGFR mutations or ALK or ROS1 alterations. The most important clinical feature was a significantly shortened overall survival (HR 3.61; median OS 8.2 vs. 23.6 months). Worse prognosis did not depend on initial stage or treatment.
Conclusions: The newly defined top-level category of MET amplification in NSCLC defines a specific subgroup of pulmonary adenocarcinoma with adverse prognosis and characteristic morphological features. Lower levels of MET gene copy number seem to have probably no specific value as a prognostic or predictive biomarker.
Keywords: Mesenchymal-epithelial transition receptor (MET); amplification; fluorescence in situ hybridization (FISH); lung cancer; non-small cell lung cancer (NSCLC).
2020 Translational Lung Cancer Research. All rights reserved.
Conflict of interest statement
Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at http://dx.doi.org/10.21037/tlcr-19-339). TRO reports personal fees from AstraZeneca, personal fees from BMS, personal fees from Boehringer-Ingelheim, personal fees from Eli Lilly, personal fees from Medac, personal fees from MSD, personal fees from Novartis, personal fees from Roche/Genentec, personal fees from Sanofi-Aventis, outside the submitted work. KS reports personal fees from MSD Germany, personal fees and non-financial support from Roche Austria, personal fees and non-financial support from Novartis Austria, outside the submitted work. AR reports grants from AbbVie, grants from AstraZeneca, grants from BMS, grants from Boehringer Ingelheim, grants from Eli Lilly, grants from MSD, grants from Novartis, grants from Pfizer, grants from Roche, outside the submitted work. HUS reports grants and personal fees from Novartis Oncology, personal fees from MSD, personal fees from BMS, personal fees from Pfizer, personal fees from ZytoVision, personal fees from Roche, from Abbvie, personal fees from Zytomed Systems, outside the submitted work. The other authors have no conflicts of interest to declare.
Figures
References
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous