Humanized Mice Are Precious Tools for Preclinical Evaluation of CAR T and CAR NK Cell Therapies
- PMID: 32679920
- PMCID: PMC7409195
- DOI: 10.3390/cancers12071915
Humanized Mice Are Precious Tools for Preclinical Evaluation of CAR T and CAR NK Cell Therapies
Abstract
Chimeric antigen receptor (CAR) T-cell therapy represents a revolutionary treatment for hematological malignancies. However, improvements in CAR T-cell therapies are urgently needed since CAR T cell application is associated with toxicities, exhaustion, immune suppression, lack of long-term persistence, and low CAR T-cell tumor infiltration. Major efforts to overcome these hurdles are currently on the way. Incrementally improved xenograft mouse models, supporting the engraftment and development of a human hemato-lymphoid system and tumor tissue, represent an important fundamental and preclinical research tool. We will focus here on several CAR T and CAR NK therapies that have benefited from evaluation in humanized mice. These models are of great value for the cancer therapy field as they provide a more reliable understanding of sometimes complicated therapeutic interventions. Additionally, they are considered the gold standard with regard to assessment of new CAR technologies in vivo for safety, efficacy, immune response, design, combination therapies, exhaustion, persistence, and mechanism of action prior to starting a clinical trial. They help to expedite the critical translation from proof-of-concept to clinical CAR T-cell application. In this review, we discuss innovative developments in the CAR T-cell therapy field that benefited from evaluation in humanized mice, illustrated by multiple examples.
Keywords: CAR NK cell; CAR T cell; PDX mouse; cancer therapy; humanized mouse model; in vivo gene therapy; xenograft mouse.
Conflict of interest statement
E.V. is inventor on a patent of the receptor targeted Niv-LVs, which is under license with SANA.
Figures
References
-
- Posey A.D., Jr., Schwab R.D., Boesteanu A.C., Steentoft C., Mandel U., Engels B., Stone J.D., Madsen T.D., Schreiber K., Haines K.M., et al. Engineered CAR T Cells Targeting the Cancer-Associated Tn-Glycoform of the Membrane Mucin MUC1 Control Adenocarcinoma. Immunity. 2016;44:1444–1454. doi: 10.1016/j.immuni.2016.05.014. - DOI - PMC - PubMed
-
- Kershaw M.H., Westwood J.A., Parker L.L., Wang G., Eshhar Z., Mavroukakis S.A., White D.E., Wunderlich J.R., Canevari S., Rogers-Freezer L., et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin. Cancer Res. 2006;12:6106–6115. doi: 10.1158/1078-0432.CCR-06-1183. - DOI - PMC - PubMed
-
- Lamers C.H., Sleijfer S., Vulto A.G., Kruit W.H., Kliffen M., Debets R., Gratama J.W., Stoter G., Oosterwijk E. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: First clinical experience. J. Clin. Oncol. 2006;24:e20–e22. doi: 10.1200/JCO.2006.05.9964. - DOI - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
