Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Dec 1;105(12):dgaa465.
doi: 10.1210/clinem/dgaa465.

DNA Methylation Profiling and Genomic Analysis in 20 Children with Short Stature Who Were Born Small for Gestational Age

Collaborators, Affiliations

DNA Methylation Profiling and Genomic Analysis in 20 Children with Short Stature Who Were Born Small for Gestational Age

Silke Peeters et al. J Clin Endocrinol Metab. .

Abstract

Purpose: In a significant proportion of children born small for gestational age (SGA) with failure of catch-up growth, the etiology of short stature remains unclear after routine diagnostic workup. We wanted to investigate if extensive analysis of the (epi)genome can unravel the cause of growth failure in a significant portion of these children.

Patients and methods: Twenty SGA children treated with GH because of short stature were selected from the BELGROW database of the Belgian Society for Pediatric Endocrinology and Diabetology for exome sequencing, single-nucleotide polymorphism (SNP) array and genome-wide methylation analysis to identify the (epi)genetic cause. First-year response to GH was compared with the response of SGA patients in the KIGS database.

Results: We identified (likely) pathogenic variants in 4 children (from 3 families) using exome sequencing and found pathogenic copy number variants in 2 probands using SNP array. In a child harboring a NSD1-containing microduplication, we identified a DNA methylation signature that is opposite to the genome-wide DNA methylation signature of Sotos syndrome. Moreover, we observed multilocus imprinting disturbances in 2 children in whom no other genomic alteration could be identified. Five of 6 children with a genetic diagnosis had an "above average" response to GH.

Conclusions: The study indicates that a more advanced approach with deep genotyping can unravel unexpected (epi)genomic alterations in SGA children with persistent growth failure. Most SGA children with a genetic diagnosis had a good response to GH treatment.

Keywords: DNA methylation; NSD1; growth hormone; short stature; small for gestational age.

PubMed Disclaimer

Publication types