Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jul;33(28):e2000682.
doi: 10.1002/adma.202000682. Epub 2020 Jul 19.

Recent Progress in High-Strength and Robust Regenerated Cellulose Materials

Affiliations
Review

Recent Progress in High-Strength and Robust Regenerated Cellulose Materials

Hu Tu et al. Adv Mater. 2021 Jul.

Abstract

High-strength petroleum-based materials like plastics have been widely used in various fields, but their nonbiodegradability has caused serious pollution problems. Cellulose, as the most abundant sustainable polymer, has a great chance to act as the ideal substitute for plastics due to its low cost, wide availability, biodegradability, etc. Herein, the recent achievements for developing cellulose "green" solvents and regenerated cellulose materials with high strength via the "bottom-up" route are presented. Cellulose can be regenerated to produce films/membranes, hydrogels/aerogels, filaments/fibers, microspheres/beads, bioplastics, etc., which show potential applications in textiles, biomedicine, energy storage, packaging, etc. Importantly, these cellulose-based materials can be biodegraded in soil and oceans, reducing environmental pollution. The cellulose solvents, dissolving mechanism, and strategies for constructing the regenerated cellulose functional materials with high strength and performances, together with the current achievements and urgent challenges are summarized, and some perspectives are also proposed. The near future will be an exciting era for high-strength biodegradable and renewable materials. The hope is that many environmentally friendly materials with good properties and low cost will be produced for commercial use, which will be beneficial for sustainable development in the world.

Keywords: biodegradable materials; cellulose; green solvents; high-strength materials; regenerated cellulose materials.

PubMed Disclaimer

References

    1. C. M. Rochman, M. A. Browne, B. S. Halpern, B. T. Hentschel, E. Hoh, H. K. Karapanagioti, L. M. Rios-Mendoza, H. Takada, S. Teh, R. C. Thompson, Nature 2013, 494, 169.
    1. J. R. Jambeck, R. Geyer, C. Wilcox, T. R. Siegler, M. Perryman, A. Andrady, R. Narayan, K. L. Law, Science 2015, 347, 768.
    1. M. Bergmann, M. B. Tekman, L. Gutow, Nature 2017, 544, 297.
    1. E. MacArthur, Science 2017, 358, 843.
    1. I. Peeken, S. Primpke, B. Beyer, J. Gütermann, C. Katlein, T. Krumpen, M. Bergmann, L. Hehemann, G. Gerdts, Nat. Commun. 2018, 9, 1505.

LinkOut - more resources