Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jul;35(5):382-393.
doi: 10.1071/FP08017.

Expression of sucrose synthase in the developing endosperm is essential for early seed development in cotton

Affiliations

Expression of sucrose synthase in the developing endosperm is essential for early seed development in cotton

Yong-Ling Ruan et al. Funct Plant Biol. 2008 Jul.

Abstract

Successful seed development requires coordinated interaction of the endosperm and embryo. In most dicotyledonous seeds, the endosperm is crushed and absorbed by the expanding embryo in the later stages of seed development. Little is known about the metabolic interaction between the two filial tissues early in seed development. We examined the potential role of sucrose synthase (Sus) in the endosperm development of cotton. Sus was immunologically localised in the cellularising endosperm, but not in the heart-stage embryo at 10 days after anthesis. The activities of Sus and acid invertase were significantly higher in the endosperm than in the young embryos, which corresponded to a steep concentration difference in hexoses between the endosperm and the embryo. This observation indicates a role for the endosperm in generating hexoses for the development of the two filial tissues. Interestingly, Sus expression and starch deposition were spatially separated in the seeds. Silencing the expression of Sus in the endosperm using an RNAi approach led to the arrest of early seed development. Histochemical analyses revealed a significant reduction in cellulose and callose in the deformed endosperm cells of the Sus-suppressed seed. The data indicate a critical role of Sus in early seed development through regulation of endosperm formation.

PubMed Disclaimer

LinkOut - more resources